2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 01:51:26 +00:00
ovs/lib/dpif-netdev.c
Xiao Liang fd016ae3fb lib: Move lib/poll-loop.h to include/openvswitch
Poll-loop is the core to implement main loop. It should be available in
libopenvswitch.

Signed-off-by: Xiao Liang <shaw.leon@gmail.com>
Signed-off-by: Ben Pfaff <blp@ovn.org>
2017-11-03 10:47:55 -07:00

6160 lines
192 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2016, 2017 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "dpif-netdev.h"
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <net/if.h>
#include <netinet/in.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <unistd.h>
#ifdef DPDK_NETDEV
#include <rte_cycles.h>
#endif
#include "bitmap.h"
#include "cmap.h"
#include "conntrack.h"
#include "coverage.h"
#include "ct-dpif.h"
#include "csum.h"
#include "dp-packet.h"
#include "dpif.h"
#include "dpif-provider.h"
#include "dummy.h"
#include "fat-rwlock.h"
#include "flow.h"
#include "hmapx.h"
#include "id-pool.h"
#include "latch.h"
#include "netdev.h"
#include "netdev-vport.h"
#include "netlink.h"
#include "odp-execute.h"
#include "odp-util.h"
#include "openvswitch/dynamic-string.h"
#include "openvswitch/list.h"
#include "openvswitch/match.h"
#include "openvswitch/ofp-print.h"
#include "openvswitch/ofp-util.h"
#include "openvswitch/ofpbuf.h"
#include "openvswitch/shash.h"
#include "openvswitch/vlog.h"
#include "ovs-numa.h"
#include "ovs-rcu.h"
#include "packets.h"
#include "openvswitch/poll-loop.h"
#include "pvector.h"
#include "random.h"
#include "seq.h"
#include "smap.h"
#include "sset.h"
#include "timeval.h"
#include "tnl-neigh-cache.h"
#include "tnl-ports.h"
#include "unixctl.h"
#include "util.h"
VLOG_DEFINE_THIS_MODULE(dpif_netdev);
#define FLOW_DUMP_MAX_BATCH 50
/* Use per thread recirc_depth to prevent recirculation loop. */
#define MAX_RECIRC_DEPTH 5
DEFINE_STATIC_PER_THREAD_DATA(uint32_t, recirc_depth, 0)
/* Configuration parameters. */
enum { MAX_FLOWS = 65536 }; /* Maximum number of flows in flow table. */
enum { MAX_METERS = 65536 }; /* Maximum number of meters. */
enum { MAX_BANDS = 8 }; /* Maximum number of bands / meter. */
enum { N_METER_LOCKS = 64 }; /* Maximum number of meters. */
/* Protects against changes to 'dp_netdevs'. */
static struct ovs_mutex dp_netdev_mutex = OVS_MUTEX_INITIALIZER;
/* Contains all 'struct dp_netdev's. */
static struct shash dp_netdevs OVS_GUARDED_BY(dp_netdev_mutex)
= SHASH_INITIALIZER(&dp_netdevs);
static struct vlog_rate_limit upcall_rl = VLOG_RATE_LIMIT_INIT(600, 600);
#define DP_NETDEV_CS_SUPPORTED_MASK (CS_NEW | CS_ESTABLISHED | CS_RELATED \
| CS_INVALID | CS_REPLY_DIR | CS_TRACKED \
| CS_SRC_NAT | CS_DST_NAT)
#define DP_NETDEV_CS_UNSUPPORTED_MASK (~(uint32_t)DP_NETDEV_CS_SUPPORTED_MASK)
static struct odp_support dp_netdev_support = {
.max_vlan_headers = SIZE_MAX,
.max_mpls_depth = SIZE_MAX,
.recirc = true,
.ct_state = true,
.ct_zone = true,
.ct_mark = true,
.ct_label = true,
.ct_state_nat = true,
.ct_orig_tuple = true,
.ct_orig_tuple6 = true,
};
/* Stores a miniflow with inline values */
struct netdev_flow_key {
uint32_t hash; /* Hash function differs for different users. */
uint32_t len; /* Length of the following miniflow (incl. map). */
struct miniflow mf;
uint64_t buf[FLOW_MAX_PACKET_U64S];
};
/* Exact match cache for frequently used flows
*
* The cache uses a 32-bit hash of the packet (which can be the RSS hash) to
* search its entries for a miniflow that matches exactly the miniflow of the
* packet. It stores the 'dpcls_rule' (rule) that matches the miniflow.
*
* A cache entry holds a reference to its 'dp_netdev_flow'.
*
* A miniflow with a given hash can be in one of EM_FLOW_HASH_SEGS different
* entries. The 32-bit hash is split into EM_FLOW_HASH_SEGS values (each of
* them is EM_FLOW_HASH_SHIFT bits wide and the remainder is thrown away). Each
* value is the index of a cache entry where the miniflow could be.
*
*
* Thread-safety
* =============
*
* Each pmd_thread has its own private exact match cache.
* If dp_netdev_input is not called from a pmd thread, a mutex is used.
*/
#define EM_FLOW_HASH_SHIFT 13
#define EM_FLOW_HASH_ENTRIES (1u << EM_FLOW_HASH_SHIFT)
#define EM_FLOW_HASH_MASK (EM_FLOW_HASH_ENTRIES - 1)
#define EM_FLOW_HASH_SEGS 2
/* Default EMC insert probability is 1 / DEFAULT_EM_FLOW_INSERT_INV_PROB */
#define DEFAULT_EM_FLOW_INSERT_INV_PROB 100
#define DEFAULT_EM_FLOW_INSERT_MIN (UINT32_MAX / \
DEFAULT_EM_FLOW_INSERT_INV_PROB)
struct emc_entry {
struct dp_netdev_flow *flow;
struct netdev_flow_key key; /* key.hash used for emc hash value. */
};
struct emc_cache {
struct emc_entry entries[EM_FLOW_HASH_ENTRIES];
int sweep_idx; /* For emc_cache_slow_sweep(). */
};
/* Iterate in the exact match cache through every entry that might contain a
* miniflow with hash 'HASH'. */
#define EMC_FOR_EACH_POS_WITH_HASH(EMC, CURRENT_ENTRY, HASH) \
for (uint32_t i__ = 0, srch_hash__ = (HASH); \
(CURRENT_ENTRY) = &(EMC)->entries[srch_hash__ & EM_FLOW_HASH_MASK], \
i__ < EM_FLOW_HASH_SEGS; \
i__++, srch_hash__ >>= EM_FLOW_HASH_SHIFT)
/* Simple non-wildcarding single-priority classifier. */
/* Time in ms between successive optimizations of the dpcls subtable vector */
#define DPCLS_OPTIMIZATION_INTERVAL 1000
/* Time in ms of the interval in which rxq processing cycles used in
* rxq to pmd assignments is measured and stored. */
#define PMD_RXQ_INTERVAL_LEN 10000
/* Number of intervals for which cycles are stored
* and used during rxq to pmd assignment. */
#define PMD_RXQ_INTERVAL_MAX 6
struct dpcls {
struct cmap_node node; /* Within dp_netdev_pmd_thread.classifiers */
odp_port_t in_port;
struct cmap subtables_map;
struct pvector subtables;
};
/* A rule to be inserted to the classifier. */
struct dpcls_rule {
struct cmap_node cmap_node; /* Within struct dpcls_subtable 'rules'. */
struct netdev_flow_key *mask; /* Subtable's mask. */
struct netdev_flow_key flow; /* Matching key. */
/* 'flow' must be the last field, additional space is allocated here. */
};
static void dpcls_init(struct dpcls *);
static void dpcls_destroy(struct dpcls *);
static void dpcls_sort_subtable_vector(struct dpcls *);
static void dpcls_insert(struct dpcls *, struct dpcls_rule *,
const struct netdev_flow_key *mask);
static void dpcls_remove(struct dpcls *, struct dpcls_rule *);
static bool dpcls_lookup(struct dpcls *cls,
const struct netdev_flow_key keys[],
struct dpcls_rule **rules, size_t cnt,
int *num_lookups_p);
/* Set of supported meter flags */
#define DP_SUPPORTED_METER_FLAGS_MASK \
(OFPMF13_STATS | OFPMF13_PKTPS | OFPMF13_KBPS | OFPMF13_BURST)
/* Set of supported meter band types */
#define DP_SUPPORTED_METER_BAND_TYPES \
( 1 << OFPMBT13_DROP )
struct dp_meter_band {
struct ofputil_meter_band up; /* type, prec_level, pad, rate, burst_size */
uint32_t bucket; /* In 1/1000 packets (for PKTPS), or in bits (for KBPS) */
uint64_t packet_count;
uint64_t byte_count;
};
struct dp_meter {
uint16_t flags;
uint16_t n_bands;
uint32_t max_delta_t;
uint64_t used;
uint64_t packet_count;
uint64_t byte_count;
struct dp_meter_band bands[];
};
/* Datapath based on the network device interface from netdev.h.
*
*
* Thread-safety
* =============
*
* Some members, marked 'const', are immutable. Accessing other members
* requires synchronization, as noted in more detail below.
*
* Acquisition order is, from outermost to innermost:
*
* dp_netdev_mutex (global)
* port_mutex
* non_pmd_mutex
*/
struct dp_netdev {
const struct dpif_class *const class;
const char *const name;
struct dpif *dpif;
struct ovs_refcount ref_cnt;
atomic_flag destroyed;
/* Ports.
*
* Any lookup into 'ports' or any access to the dp_netdev_ports found
* through 'ports' requires taking 'port_mutex'. */
struct ovs_mutex port_mutex;
struct hmap ports;
struct seq *port_seq; /* Incremented whenever a port changes. */
/* Meters. */
struct ovs_mutex meter_locks[N_METER_LOCKS];
struct dp_meter *meters[MAX_METERS]; /* Meter bands. */
/* Probability of EMC insertions is a factor of 'emc_insert_min'.*/
OVS_ALIGNED_VAR(CACHE_LINE_SIZE) atomic_uint32_t emc_insert_min;
/* Protects access to ofproto-dpif-upcall interface during revalidator
* thread synchronization. */
struct fat_rwlock upcall_rwlock;
upcall_callback *upcall_cb; /* Callback function for executing upcalls. */
void *upcall_aux;
/* Callback function for notifying the purging of dp flows (during
* reseting pmd deletion). */
dp_purge_callback *dp_purge_cb;
void *dp_purge_aux;
/* Stores all 'struct dp_netdev_pmd_thread's. */
struct cmap poll_threads;
/* id pool for per thread static_tx_qid. */
struct id_pool *tx_qid_pool;
struct ovs_mutex tx_qid_pool_mutex;
/* Protects the access of the 'struct dp_netdev_pmd_thread'
* instance for non-pmd thread. */
struct ovs_mutex non_pmd_mutex;
/* Each pmd thread will store its pointer to
* 'struct dp_netdev_pmd_thread' in 'per_pmd_key'. */
ovsthread_key_t per_pmd_key;
struct seq *reconfigure_seq;
uint64_t last_reconfigure_seq;
/* Cpu mask for pin of pmd threads. */
char *pmd_cmask;
uint64_t last_tnl_conf_seq;
struct conntrack conntrack;
};
static void meter_lock(const struct dp_netdev *dp, uint32_t meter_id)
OVS_ACQUIRES(dp->meter_locks[meter_id % N_METER_LOCKS])
{
ovs_mutex_lock(&dp->meter_locks[meter_id % N_METER_LOCKS]);
}
static void meter_unlock(const struct dp_netdev *dp, uint32_t meter_id)
OVS_RELEASES(dp->meter_locks[meter_id % N_METER_LOCKS])
{
ovs_mutex_unlock(&dp->meter_locks[meter_id % N_METER_LOCKS]);
}
static struct dp_netdev_port *dp_netdev_lookup_port(const struct dp_netdev *dp,
odp_port_t)
OVS_REQUIRES(dp->port_mutex);
enum dp_stat_type {
DP_STAT_EXACT_HIT, /* Packets that had an exact match (emc). */
DP_STAT_MASKED_HIT, /* Packets that matched in the flow table. */
DP_STAT_MISS, /* Packets that did not match. */
DP_STAT_LOST, /* Packets not passed up to the client. */
DP_STAT_LOOKUP_HIT, /* Number of subtable lookups for flow table
hits */
DP_N_STATS
};
enum pmd_cycles_counter_type {
PMD_CYCLES_IDLE, /* Cycles spent idle or unsuccessful polling */
PMD_CYCLES_PROCESSING, /* Cycles spent successfully polling and
* processing polled packets */
PMD_N_CYCLES
};
enum rxq_cycles_counter_type {
RXQ_CYCLES_PROC_CURR, /* Cycles spent successfully polling and
processing packets during the current
interval. */
RXQ_CYCLES_PROC_HIST, /* Total cycles of all intervals that are used
during rxq to pmd assignment. */
RXQ_N_CYCLES
};
#define XPS_TIMEOUT_MS 500LL
/* Contained by struct dp_netdev_port's 'rxqs' member. */
struct dp_netdev_rxq {
struct dp_netdev_port *port;
struct netdev_rxq *rx;
unsigned core_id; /* Core to which this queue should be
pinned. OVS_CORE_UNSPEC if the
queue doesn't need to be pinned to a
particular core. */
struct dp_netdev_pmd_thread *pmd; /* pmd thread that polls this queue. */
/* Counters of cycles spent successfully polling and processing pkts. */
atomic_ullong cycles[RXQ_N_CYCLES];
/* We store PMD_RXQ_INTERVAL_MAX intervals of data for an rxq and then
sum them to yield the cycles used for an rxq. */
atomic_ullong cycles_intrvl[PMD_RXQ_INTERVAL_MAX];
unsigned intrvl_idx; /* Write index for 'cycles_intrvl'. */
};
/* A port in a netdev-based datapath. */
struct dp_netdev_port {
odp_port_t port_no;
bool dynamic_txqs; /* If true XPS will be used. */
bool need_reconfigure; /* True if we should reconfigure netdev. */
struct netdev *netdev;
struct hmap_node node; /* Node in dp_netdev's 'ports'. */
struct netdev_saved_flags *sf;
struct dp_netdev_rxq *rxqs;
unsigned n_rxq; /* Number of elements in 'rxqs' */
unsigned *txq_used; /* Number of threads that use each tx queue. */
struct ovs_mutex txq_used_mutex;
char *type; /* Port type as requested by user. */
char *rxq_affinity_list; /* Requested affinity of rx queues. */
};
/* Contained by struct dp_netdev_flow's 'stats' member. */
struct dp_netdev_flow_stats {
atomic_llong used; /* Last used time, in monotonic msecs. */
atomic_ullong packet_count; /* Number of packets matched. */
atomic_ullong byte_count; /* Number of bytes matched. */
atomic_uint16_t tcp_flags; /* Bitwise-OR of seen tcp_flags values. */
};
/* A flow in 'dp_netdev_pmd_thread's 'flow_table'.
*
*
* Thread-safety
* =============
*
* Except near the beginning or ending of its lifespan, rule 'rule' belongs to
* its pmd thread's classifier. The text below calls this classifier 'cls'.
*
* Motivation
* ----------
*
* The thread safety rules described here for "struct dp_netdev_flow" are
* motivated by two goals:
*
* - Prevent threads that read members of "struct dp_netdev_flow" from
* reading bad data due to changes by some thread concurrently modifying
* those members.
*
* - Prevent two threads making changes to members of a given "struct
* dp_netdev_flow" from interfering with each other.
*
*
* Rules
* -----
*
* A flow 'flow' may be accessed without a risk of being freed during an RCU
* grace period. Code that needs to hold onto a flow for a while
* should try incrementing 'flow->ref_cnt' with dp_netdev_flow_ref().
*
* 'flow->ref_cnt' protects 'flow' from being freed. It doesn't protect the
* flow from being deleted from 'cls' and it doesn't protect members of 'flow'
* from modification.
*
* Some members, marked 'const', are immutable. Accessing other members
* requires synchronization, as noted in more detail below.
*/
struct dp_netdev_flow {
const struct flow flow; /* Unmasked flow that created this entry. */
/* Hash table index by unmasked flow. */
const struct cmap_node node; /* In owning dp_netdev_pmd_thread's */
/* 'flow_table'. */
const ovs_u128 ufid; /* Unique flow identifier. */
const unsigned pmd_id; /* The 'core_id' of pmd thread owning this */
/* flow. */
/* Number of references.
* The classifier owns one reference.
* Any thread trying to keep a rule from being freed should hold its own
* reference. */
struct ovs_refcount ref_cnt;
bool dead;
/* Statistics. */
struct dp_netdev_flow_stats stats;
/* Actions. */
OVSRCU_TYPE(struct dp_netdev_actions *) actions;
/* While processing a group of input packets, the datapath uses the next
* member to store a pointer to the output batch for the flow. It is
* reset after the batch has been sent out (See dp_netdev_queue_batches(),
* packet_batch_per_flow_init() and packet_batch_per_flow_execute()). */
struct packet_batch_per_flow *batch;
/* Packet classification. */
struct dpcls_rule cr; /* In owning dp_netdev's 'cls'. */
/* 'cr' must be the last member. */
};
static void dp_netdev_flow_unref(struct dp_netdev_flow *);
static bool dp_netdev_flow_ref(struct dp_netdev_flow *);
static int dpif_netdev_flow_from_nlattrs(const struct nlattr *, uint32_t,
struct flow *, bool);
/* A set of datapath actions within a "struct dp_netdev_flow".
*
*
* Thread-safety
* =============
*
* A struct dp_netdev_actions 'actions' is protected with RCU. */
struct dp_netdev_actions {
/* These members are immutable: they do not change during the struct's
* lifetime. */
unsigned int size; /* Size of 'actions', in bytes. */
struct nlattr actions[]; /* Sequence of OVS_ACTION_ATTR_* attributes. */
};
struct dp_netdev_actions *dp_netdev_actions_create(const struct nlattr *,
size_t);
struct dp_netdev_actions *dp_netdev_flow_get_actions(
const struct dp_netdev_flow *);
static void dp_netdev_actions_free(struct dp_netdev_actions *);
/* Contained by struct dp_netdev_pmd_thread's 'stats' member. */
struct dp_netdev_pmd_stats {
/* Indexed by DP_STAT_*. */
atomic_ullong n[DP_N_STATS];
};
/* Contained by struct dp_netdev_pmd_thread's 'cycle' member. */
struct dp_netdev_pmd_cycles {
/* Indexed by PMD_CYCLES_*. */
atomic_ullong n[PMD_N_CYCLES];
};
struct polled_queue {
struct dp_netdev_rxq *rxq;
odp_port_t port_no;
};
/* Contained by struct dp_netdev_pmd_thread's 'poll_list' member. */
struct rxq_poll {
struct dp_netdev_rxq *rxq;
struct hmap_node node;
};
/* Contained by struct dp_netdev_pmd_thread's 'send_port_cache',
* 'tnl_port_cache' or 'tx_ports'. */
struct tx_port {
struct dp_netdev_port *port;
int qid;
long long last_used;
struct hmap_node node;
};
/* PMD: Poll modes drivers. PMD accesses devices via polling to eliminate
* the performance overhead of interrupt processing. Therefore netdev can
* not implement rx-wait for these devices. dpif-netdev needs to poll
* these device to check for recv buffer. pmd-thread does polling for
* devices assigned to itself.
*
* DPDK used PMD for accessing NIC.
*
* Note, instance with cpu core id NON_PMD_CORE_ID will be reserved for
* I/O of all non-pmd threads. There will be no actual thread created
* for the instance.
*
* Each struct has its own flow cache and classifier per managed ingress port.
* For packets received on ingress port, a look up is done on corresponding PMD
* thread's flow cache and in case of a miss, lookup is performed in the
* corresponding classifier of port. Packets are executed with the found
* actions in either case.
* */
struct dp_netdev_pmd_thread {
struct dp_netdev *dp;
struct ovs_refcount ref_cnt; /* Every reference must be refcount'ed. */
struct cmap_node node; /* In 'dp->poll_threads'. */
pthread_cond_t cond; /* For synchronizing pmd thread reload. */
struct ovs_mutex cond_mutex; /* Mutex for condition variable. */
/* Per thread exact-match cache. Note, the instance for cpu core
* NON_PMD_CORE_ID can be accessed by multiple threads, and thusly
* need to be protected by 'non_pmd_mutex'. Every other instance
* will only be accessed by its own pmd thread. */
struct emc_cache flow_cache;
/* Flow-Table and classifiers
*
* Writers of 'flow_table' must take the 'flow_mutex'. Corresponding
* changes to 'classifiers' must be made while still holding the
* 'flow_mutex'.
*/
struct ovs_mutex flow_mutex;
struct cmap flow_table OVS_GUARDED; /* Flow table. */
/* One classifier per in_port polled by the pmd */
struct cmap classifiers;
/* Periodically sort subtable vectors according to hit frequencies */
long long int next_optimization;
/* End of the next time interval for which processing cycles
are stored for each polled rxq. */
long long int rxq_interval;
/* Statistics. */
struct dp_netdev_pmd_stats stats;
/* Cycles counters */
struct dp_netdev_pmd_cycles cycles;
/* Used to count cicles. See 'cycles_counter_end()' */
unsigned long long last_cycles;
struct latch exit_latch; /* For terminating the pmd thread. */
struct seq *reload_seq;
uint64_t last_reload_seq;
atomic_bool reload; /* Do we need to reload ports? */
pthread_t thread;
unsigned core_id; /* CPU core id of this pmd thread. */
int numa_id; /* numa node id of this pmd thread. */
bool isolated;
/* Queue id used by this pmd thread to send packets on all netdevs if
* XPS disabled for this netdev. All static_tx_qid's are unique and less
* than 'cmap_count(dp->poll_threads)'. */
uint32_t static_tx_qid;
struct ovs_mutex port_mutex; /* Mutex for 'poll_list' and 'tx_ports'. */
/* List of rx queues to poll. */
struct hmap poll_list OVS_GUARDED;
/* Map of 'tx_port's used for transmission. Written by the main thread,
* read by the pmd thread. */
struct hmap tx_ports OVS_GUARDED;
/* These are thread-local copies of 'tx_ports'. One contains only tunnel
* ports (that support push_tunnel/pop_tunnel), the other contains ports
* with at least one txq (that support send). A port can be in both.
*
* There are two separate maps to make sure that we don't try to execute
* OUTPUT on a device which has 0 txqs or PUSH/POP on a non-tunnel device.
*
* The instances for cpu core NON_PMD_CORE_ID can be accessed by multiple
* threads, and thusly need to be protected by 'non_pmd_mutex'. Every
* other instance will only be accessed by its own pmd thread. */
struct hmap tnl_port_cache;
struct hmap send_port_cache;
/* Only a pmd thread can write on its own 'cycles' and 'stats'.
* The main thread keeps 'stats_zero' and 'cycles_zero' as base
* values and subtracts them from 'stats' and 'cycles' before
* reporting to the user */
unsigned long long stats_zero[DP_N_STATS];
uint64_t cycles_zero[PMD_N_CYCLES];
/* Set to true if the pmd thread needs to be reloaded. */
bool need_reload;
};
/* Interface to netdev-based datapath. */
struct dpif_netdev {
struct dpif dpif;
struct dp_netdev *dp;
uint64_t last_port_seq;
};
static int get_port_by_number(struct dp_netdev *dp, odp_port_t port_no,
struct dp_netdev_port **portp)
OVS_REQUIRES(dp->port_mutex);
static int get_port_by_name(struct dp_netdev *dp, const char *devname,
struct dp_netdev_port **portp)
OVS_REQUIRES(dp->port_mutex);
static void dp_netdev_free(struct dp_netdev *)
OVS_REQUIRES(dp_netdev_mutex);
static int do_add_port(struct dp_netdev *dp, const char *devname,
const char *type, odp_port_t port_no)
OVS_REQUIRES(dp->port_mutex);
static void do_del_port(struct dp_netdev *dp, struct dp_netdev_port *)
OVS_REQUIRES(dp->port_mutex);
static int dpif_netdev_open(const struct dpif_class *, const char *name,
bool create, struct dpif **);
static void dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
struct dp_packet_batch *,
bool may_steal, const struct flow *flow,
const struct nlattr *actions,
size_t actions_len,
long long now);
static void dp_netdev_input(struct dp_netdev_pmd_thread *,
struct dp_packet_batch *, odp_port_t port_no);
static void dp_netdev_recirculate(struct dp_netdev_pmd_thread *,
struct dp_packet_batch *);
static void dp_netdev_disable_upcall(struct dp_netdev *);
static void dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd);
static void dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd,
struct dp_netdev *dp, unsigned core_id,
int numa_id);
static void dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd);
static void dp_netdev_set_nonpmd(struct dp_netdev *dp)
OVS_REQUIRES(dp->port_mutex);
static void *pmd_thread_main(void *);
static struct dp_netdev_pmd_thread *dp_netdev_get_pmd(struct dp_netdev *dp,
unsigned core_id);
static struct dp_netdev_pmd_thread *
dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos);
static void dp_netdev_del_pmd(struct dp_netdev *dp,
struct dp_netdev_pmd_thread *pmd);
static void dp_netdev_destroy_all_pmds(struct dp_netdev *dp, bool non_pmd);
static void dp_netdev_pmd_clear_ports(struct dp_netdev_pmd_thread *pmd);
static void dp_netdev_add_port_tx_to_pmd(struct dp_netdev_pmd_thread *pmd,
struct dp_netdev_port *port)
OVS_REQUIRES(pmd->port_mutex);
static void dp_netdev_del_port_tx_from_pmd(struct dp_netdev_pmd_thread *pmd,
struct tx_port *tx)
OVS_REQUIRES(pmd->port_mutex);
static void dp_netdev_add_rxq_to_pmd(struct dp_netdev_pmd_thread *pmd,
struct dp_netdev_rxq *rxq)
OVS_REQUIRES(pmd->port_mutex);
static void dp_netdev_del_rxq_from_pmd(struct dp_netdev_pmd_thread *pmd,
struct rxq_poll *poll)
OVS_REQUIRES(pmd->port_mutex);
static void reconfigure_datapath(struct dp_netdev *dp)
OVS_REQUIRES(dp->port_mutex);
static bool dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd);
static void dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd);
static void dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd);
static void pmd_load_cached_ports(struct dp_netdev_pmd_thread *pmd)
OVS_REQUIRES(pmd->port_mutex);
static inline void
dp_netdev_pmd_try_optimize(struct dp_netdev_pmd_thread *pmd,
struct polled_queue *poll_list, int poll_cnt);
static void
dp_netdev_rxq_set_cycles(struct dp_netdev_rxq *rx,
enum rxq_cycles_counter_type type,
unsigned long long cycles);
static uint64_t
dp_netdev_rxq_get_cycles(struct dp_netdev_rxq *rx,
enum rxq_cycles_counter_type type);
static void
dp_netdev_rxq_set_intrvl_cycles(struct dp_netdev_rxq *rx,
unsigned long long cycles);
static uint64_t
dp_netdev_rxq_get_intrvl_cycles(struct dp_netdev_rxq *rx, unsigned idx);
static void
dpif_netdev_xps_revalidate_pmd(const struct dp_netdev_pmd_thread *pmd,
long long now, bool purge);
static int dpif_netdev_xps_get_tx_qid(const struct dp_netdev_pmd_thread *pmd,
struct tx_port *tx, long long now);
static inline bool emc_entry_alive(struct emc_entry *ce);
static void emc_clear_entry(struct emc_entry *ce);
static void dp_netdev_request_reconfigure(struct dp_netdev *dp);
static void
emc_cache_init(struct emc_cache *flow_cache)
{
int i;
flow_cache->sweep_idx = 0;
for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
flow_cache->entries[i].flow = NULL;
flow_cache->entries[i].key.hash = 0;
flow_cache->entries[i].key.len = sizeof(struct miniflow);
flowmap_init(&flow_cache->entries[i].key.mf.map);
}
}
static void
emc_cache_uninit(struct emc_cache *flow_cache)
{
int i;
for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
emc_clear_entry(&flow_cache->entries[i]);
}
}
/* Check and clear dead flow references slowly (one entry at each
* invocation). */
static void
emc_cache_slow_sweep(struct emc_cache *flow_cache)
{
struct emc_entry *entry = &flow_cache->entries[flow_cache->sweep_idx];
if (!emc_entry_alive(entry)) {
emc_clear_entry(entry);
}
flow_cache->sweep_idx = (flow_cache->sweep_idx + 1) & EM_FLOW_HASH_MASK;
}
/* Returns true if 'dpif' is a netdev or dummy dpif, false otherwise. */
bool
dpif_is_netdev(const struct dpif *dpif)
{
return dpif->dpif_class->open == dpif_netdev_open;
}
static struct dpif_netdev *
dpif_netdev_cast(const struct dpif *dpif)
{
ovs_assert(dpif_is_netdev(dpif));
return CONTAINER_OF(dpif, struct dpif_netdev, dpif);
}
static struct dp_netdev *
get_dp_netdev(const struct dpif *dpif)
{
return dpif_netdev_cast(dpif)->dp;
}
enum pmd_info_type {
PMD_INFO_SHOW_STATS, /* Show how cpu cycles are spent. */
PMD_INFO_CLEAR_STATS, /* Set the cycles count to 0. */
PMD_INFO_SHOW_RXQ /* Show poll-lists of pmd threads. */
};
static void
pmd_info_show_stats(struct ds *reply,
struct dp_netdev_pmd_thread *pmd,
unsigned long long stats[DP_N_STATS],
uint64_t cycles[PMD_N_CYCLES])
{
unsigned long long total_packets;
uint64_t total_cycles = 0;
int i;
/* These loops subtracts reference values ('*_zero') from the counters.
* Since loads and stores are relaxed, it might be possible for a '*_zero'
* value to be more recent than the current value we're reading from the
* counter. This is not a big problem, since these numbers are not
* supposed to be too accurate, but we should at least make sure that
* the result is not negative. */
for (i = 0; i < DP_N_STATS; i++) {
if (stats[i] > pmd->stats_zero[i]) {
stats[i] -= pmd->stats_zero[i];
} else {
stats[i] = 0;
}
}
/* Sum of all the matched and not matched packets gives the total. */
total_packets = stats[DP_STAT_EXACT_HIT] + stats[DP_STAT_MASKED_HIT]
+ stats[DP_STAT_MISS];
for (i = 0; i < PMD_N_CYCLES; i++) {
if (cycles[i] > pmd->cycles_zero[i]) {
cycles[i] -= pmd->cycles_zero[i];
} else {
cycles[i] = 0;
}
total_cycles += cycles[i];
}
ds_put_cstr(reply, (pmd->core_id == NON_PMD_CORE_ID)
? "main thread" : "pmd thread");
if (pmd->numa_id != OVS_NUMA_UNSPEC) {
ds_put_format(reply, " numa_id %d", pmd->numa_id);
}
if (pmd->core_id != OVS_CORE_UNSPEC && pmd->core_id != NON_PMD_CORE_ID) {
ds_put_format(reply, " core_id %u", pmd->core_id);
}
ds_put_cstr(reply, ":\n");
ds_put_format(reply,
"\temc hits:%llu\n\tmegaflow hits:%llu\n"
"\tavg. subtable lookups per hit:%.2f\n"
"\tmiss:%llu\n\tlost:%llu\n",
stats[DP_STAT_EXACT_HIT], stats[DP_STAT_MASKED_HIT],
stats[DP_STAT_MASKED_HIT] > 0
? (1.0*stats[DP_STAT_LOOKUP_HIT])/stats[DP_STAT_MASKED_HIT]
: 0,
stats[DP_STAT_MISS], stats[DP_STAT_LOST]);
if (total_cycles == 0) {
return;
}
ds_put_format(reply,
"\tidle cycles:%"PRIu64" (%.02f%%)\n"
"\tprocessing cycles:%"PRIu64" (%.02f%%)\n",
cycles[PMD_CYCLES_IDLE],
cycles[PMD_CYCLES_IDLE] / (double)total_cycles * 100,
cycles[PMD_CYCLES_PROCESSING],
cycles[PMD_CYCLES_PROCESSING] / (double)total_cycles * 100);
if (total_packets == 0) {
return;
}
ds_put_format(reply,
"\tavg cycles per packet: %.02f (%"PRIu64"/%llu)\n",
total_cycles / (double)total_packets,
total_cycles, total_packets);
ds_put_format(reply,
"\tavg processing cycles per packet: "
"%.02f (%"PRIu64"/%llu)\n",
cycles[PMD_CYCLES_PROCESSING] / (double)total_packets,
cycles[PMD_CYCLES_PROCESSING], total_packets);
}
static void
pmd_info_clear_stats(struct ds *reply OVS_UNUSED,
struct dp_netdev_pmd_thread *pmd,
unsigned long long stats[DP_N_STATS],
uint64_t cycles[PMD_N_CYCLES])
{
int i;
/* We cannot write 'stats' and 'cycles' (because they're written by other
* threads) and we shouldn't change 'stats' (because they're used to count
* datapath stats, which must not be cleared here). Instead, we save the
* current values and subtract them from the values to be displayed in the
* future */
for (i = 0; i < DP_N_STATS; i++) {
pmd->stats_zero[i] = stats[i];
}
for (i = 0; i < PMD_N_CYCLES; i++) {
pmd->cycles_zero[i] = cycles[i];
}
}
static int
compare_poll_list(const void *a_, const void *b_)
{
const struct rxq_poll *a = a_;
const struct rxq_poll *b = b_;
const char *namea = netdev_rxq_get_name(a->rxq->rx);
const char *nameb = netdev_rxq_get_name(b->rxq->rx);
int cmp = strcmp(namea, nameb);
if (!cmp) {
return netdev_rxq_get_queue_id(a->rxq->rx)
- netdev_rxq_get_queue_id(b->rxq->rx);
} else {
return cmp;
}
}
static void
sorted_poll_list(struct dp_netdev_pmd_thread *pmd, struct rxq_poll **list,
size_t *n)
{
struct rxq_poll *ret, *poll;
size_t i;
*n = hmap_count(&pmd->poll_list);
if (!*n) {
ret = NULL;
} else {
ret = xcalloc(*n, sizeof *ret);
i = 0;
HMAP_FOR_EACH (poll, node, &pmd->poll_list) {
ret[i] = *poll;
i++;
}
ovs_assert(i == *n);
qsort(ret, *n, sizeof *ret, compare_poll_list);
}
*list = ret;
}
static void
pmd_info_show_rxq(struct ds *reply, struct dp_netdev_pmd_thread *pmd)
{
if (pmd->core_id != NON_PMD_CORE_ID) {
const char *prev_name = NULL;
struct rxq_poll *list;
size_t i, n;
ds_put_format(reply,
"pmd thread numa_id %d core_id %u:\n\tisolated : %s\n",
pmd->numa_id, pmd->core_id, (pmd->isolated)
? "true" : "false");
ovs_mutex_lock(&pmd->port_mutex);
sorted_poll_list(pmd, &list, &n);
for (i = 0; i < n; i++) {
const char *name = netdev_rxq_get_name(list[i].rxq->rx);
if (!prev_name || strcmp(name, prev_name)) {
if (prev_name) {
ds_put_cstr(reply, "\n");
}
ds_put_format(reply, "\tport: %s\tqueue-id:", name);
}
ds_put_format(reply, " %d",
netdev_rxq_get_queue_id(list[i].rxq->rx));
prev_name = name;
}
ovs_mutex_unlock(&pmd->port_mutex);
ds_put_cstr(reply, "\n");
free(list);
}
}
static int
compare_poll_thread_list(const void *a_, const void *b_)
{
const struct dp_netdev_pmd_thread *a, *b;
a = *(struct dp_netdev_pmd_thread **)a_;
b = *(struct dp_netdev_pmd_thread **)b_;
if (a->core_id < b->core_id) {
return -1;
}
if (a->core_id > b->core_id) {
return 1;
}
return 0;
}
/* Create a sorted list of pmd's from the dp->poll_threads cmap. We can use
* this list, as long as we do not go to quiescent state. */
static void
sorted_poll_thread_list(struct dp_netdev *dp,
struct dp_netdev_pmd_thread ***list,
size_t *n)
{
struct dp_netdev_pmd_thread *pmd;
struct dp_netdev_pmd_thread **pmd_list;
size_t k = 0, n_pmds;
n_pmds = cmap_count(&dp->poll_threads);
pmd_list = xcalloc(n_pmds, sizeof *pmd_list);
CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
if (k >= n_pmds) {
break;
}
pmd_list[k++] = pmd;
}
qsort(pmd_list, k, sizeof *pmd_list, compare_poll_thread_list);
*list = pmd_list;
*n = k;
}
static void
dpif_netdev_pmd_rebalance(struct unixctl_conn *conn, int argc,
const char *argv[], void *aux OVS_UNUSED)
{
struct ds reply = DS_EMPTY_INITIALIZER;
struct dp_netdev *dp = NULL;
ovs_mutex_lock(&dp_netdev_mutex);
if (argc == 2) {
dp = shash_find_data(&dp_netdevs, argv[1]);
} else if (shash_count(&dp_netdevs) == 1) {
/* There's only one datapath */
dp = shash_first(&dp_netdevs)->data;
}
if (!dp) {
ovs_mutex_unlock(&dp_netdev_mutex);
unixctl_command_reply_error(conn,
"please specify an existing datapath");
return;
}
dp_netdev_request_reconfigure(dp);
ovs_mutex_unlock(&dp_netdev_mutex);
ds_put_cstr(&reply, "pmd rxq rebalance requested.\n");
unixctl_command_reply(conn, ds_cstr(&reply));
ds_destroy(&reply);
}
static void
dpif_netdev_pmd_info(struct unixctl_conn *conn, int argc, const char *argv[],
void *aux)
{
struct ds reply = DS_EMPTY_INITIALIZER;
struct dp_netdev_pmd_thread **pmd_list;
struct dp_netdev *dp = NULL;
size_t n;
enum pmd_info_type type = *(enum pmd_info_type *) aux;
ovs_mutex_lock(&dp_netdev_mutex);
if (argc == 2) {
dp = shash_find_data(&dp_netdevs, argv[1]);
} else if (shash_count(&dp_netdevs) == 1) {
/* There's only one datapath */
dp = shash_first(&dp_netdevs)->data;
}
if (!dp) {
ovs_mutex_unlock(&dp_netdev_mutex);
unixctl_command_reply_error(conn,
"please specify an existing datapath");
return;
}
sorted_poll_thread_list(dp, &pmd_list, &n);
for (size_t i = 0; i < n; i++) {
struct dp_netdev_pmd_thread *pmd = pmd_list[i];
if (!pmd) {
break;
}
if (type == PMD_INFO_SHOW_RXQ) {
pmd_info_show_rxq(&reply, pmd);
} else {
unsigned long long stats[DP_N_STATS];
uint64_t cycles[PMD_N_CYCLES];
/* Read current stats and cycle counters */
for (size_t j = 0; j < ARRAY_SIZE(stats); j++) {
atomic_read_relaxed(&pmd->stats.n[j], &stats[j]);
}
for (size_t j = 0; j < ARRAY_SIZE(cycles); j++) {
atomic_read_relaxed(&pmd->cycles.n[j], &cycles[j]);
}
if (type == PMD_INFO_CLEAR_STATS) {
pmd_info_clear_stats(&reply, pmd, stats, cycles);
} else if (type == PMD_INFO_SHOW_STATS) {
pmd_info_show_stats(&reply, pmd, stats, cycles);
}
}
}
free(pmd_list);
ovs_mutex_unlock(&dp_netdev_mutex);
unixctl_command_reply(conn, ds_cstr(&reply));
ds_destroy(&reply);
}
static int
dpif_netdev_init(void)
{
static enum pmd_info_type show_aux = PMD_INFO_SHOW_STATS,
clear_aux = PMD_INFO_CLEAR_STATS,
poll_aux = PMD_INFO_SHOW_RXQ;
unixctl_command_register("dpif-netdev/pmd-stats-show", "[dp]",
0, 1, dpif_netdev_pmd_info,
(void *)&show_aux);
unixctl_command_register("dpif-netdev/pmd-stats-clear", "[dp]",
0, 1, dpif_netdev_pmd_info,
(void *)&clear_aux);
unixctl_command_register("dpif-netdev/pmd-rxq-show", "[dp]",
0, 1, dpif_netdev_pmd_info,
(void *)&poll_aux);
unixctl_command_register("dpif-netdev/pmd-rxq-rebalance", "[dp]",
0, 1, dpif_netdev_pmd_rebalance,
NULL);
return 0;
}
static int
dpif_netdev_enumerate(struct sset *all_dps,
const struct dpif_class *dpif_class)
{
struct shash_node *node;
ovs_mutex_lock(&dp_netdev_mutex);
SHASH_FOR_EACH(node, &dp_netdevs) {
struct dp_netdev *dp = node->data;
if (dpif_class != dp->class) {
/* 'dp_netdevs' contains both "netdev" and "dummy" dpifs.
* If the class doesn't match, skip this dpif. */
continue;
}
sset_add(all_dps, node->name);
}
ovs_mutex_unlock(&dp_netdev_mutex);
return 0;
}
static bool
dpif_netdev_class_is_dummy(const struct dpif_class *class)
{
return class != &dpif_netdev_class;
}
static const char *
dpif_netdev_port_open_type(const struct dpif_class *class, const char *type)
{
return strcmp(type, "internal") ? type
: dpif_netdev_class_is_dummy(class) ? "dummy-internal"
: "tap";
}
static struct dpif *
create_dpif_netdev(struct dp_netdev *dp)
{
uint16_t netflow_id = hash_string(dp->name, 0);
struct dpif_netdev *dpif;
ovs_refcount_ref(&dp->ref_cnt);
dpif = xmalloc(sizeof *dpif);
dpif_init(&dpif->dpif, dp->class, dp->name, netflow_id >> 8, netflow_id);
dpif->dp = dp;
dpif->last_port_seq = seq_read(dp->port_seq);
return &dpif->dpif;
}
/* Choose an unused, non-zero port number and return it on success.
* Return ODPP_NONE on failure. */
static odp_port_t
choose_port(struct dp_netdev *dp, const char *name)
OVS_REQUIRES(dp->port_mutex)
{
uint32_t port_no;
if (dp->class != &dpif_netdev_class) {
const char *p;
int start_no = 0;
/* If the port name begins with "br", start the number search at
* 100 to make writing tests easier. */
if (!strncmp(name, "br", 2)) {
start_no = 100;
}
/* If the port name contains a number, try to assign that port number.
* This can make writing unit tests easier because port numbers are
* predictable. */
for (p = name; *p != '\0'; p++) {
if (isdigit((unsigned char) *p)) {
port_no = start_no + strtol(p, NULL, 10);
if (port_no > 0 && port_no != odp_to_u32(ODPP_NONE)
&& !dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
return u32_to_odp(port_no);
}
break;
}
}
}
for (port_no = 1; port_no <= UINT16_MAX; port_no++) {
if (!dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
return u32_to_odp(port_no);
}
}
return ODPP_NONE;
}
static int
create_dp_netdev(const char *name, const struct dpif_class *class,
struct dp_netdev **dpp)
OVS_REQUIRES(dp_netdev_mutex)
{
struct dp_netdev *dp;
int error;
dp = xzalloc(sizeof *dp);
shash_add(&dp_netdevs, name, dp);
*CONST_CAST(const struct dpif_class **, &dp->class) = class;
*CONST_CAST(const char **, &dp->name) = xstrdup(name);
ovs_refcount_init(&dp->ref_cnt);
atomic_flag_clear(&dp->destroyed);
ovs_mutex_init(&dp->port_mutex);
hmap_init(&dp->ports);
dp->port_seq = seq_create();
fat_rwlock_init(&dp->upcall_rwlock);
dp->reconfigure_seq = seq_create();
dp->last_reconfigure_seq = seq_read(dp->reconfigure_seq);
for (int i = 0; i < N_METER_LOCKS; ++i) {
ovs_mutex_init_adaptive(&dp->meter_locks[i]);
}
/* Disable upcalls by default. */
dp_netdev_disable_upcall(dp);
dp->upcall_aux = NULL;
dp->upcall_cb = NULL;
conntrack_init(&dp->conntrack);
atomic_init(&dp->emc_insert_min, DEFAULT_EM_FLOW_INSERT_MIN);
cmap_init(&dp->poll_threads);
ovs_mutex_init(&dp->tx_qid_pool_mutex);
/* We need 1 Tx queue for each possible core + 1 for non-PMD threads. */
dp->tx_qid_pool = id_pool_create(0, ovs_numa_get_n_cores() + 1);
ovs_mutex_init_recursive(&dp->non_pmd_mutex);
ovsthread_key_create(&dp->per_pmd_key, NULL);
ovs_mutex_lock(&dp->port_mutex);
/* non-PMD will be created before all other threads and will
* allocate static_tx_qid = 0. */
dp_netdev_set_nonpmd(dp);
error = do_add_port(dp, name, dpif_netdev_port_open_type(dp->class,
"internal"),
ODPP_LOCAL);
ovs_mutex_unlock(&dp->port_mutex);
if (error) {
dp_netdev_free(dp);
return error;
}
dp->last_tnl_conf_seq = seq_read(tnl_conf_seq);
*dpp = dp;
return 0;
}
static void
dp_netdev_request_reconfigure(struct dp_netdev *dp)
{
seq_change(dp->reconfigure_seq);
}
static bool
dp_netdev_is_reconf_required(struct dp_netdev *dp)
{
return seq_read(dp->reconfigure_seq) != dp->last_reconfigure_seq;
}
static int
dpif_netdev_open(const struct dpif_class *class, const char *name,
bool create, struct dpif **dpifp)
{
struct dp_netdev *dp;
int error;
ovs_mutex_lock(&dp_netdev_mutex);
dp = shash_find_data(&dp_netdevs, name);
if (!dp) {
error = create ? create_dp_netdev(name, class, &dp) : ENODEV;
} else {
error = (dp->class != class ? EINVAL
: create ? EEXIST
: 0);
}
if (!error) {
*dpifp = create_dpif_netdev(dp);
dp->dpif = *dpifp;
}
ovs_mutex_unlock(&dp_netdev_mutex);
return error;
}
static void
dp_netdev_destroy_upcall_lock(struct dp_netdev *dp)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
/* Check that upcalls are disabled, i.e. that the rwlock is taken */
ovs_assert(fat_rwlock_tryrdlock(&dp->upcall_rwlock));
/* Before freeing a lock we should release it */
fat_rwlock_unlock(&dp->upcall_rwlock);
fat_rwlock_destroy(&dp->upcall_rwlock);
}
static void
dp_delete_meter(struct dp_netdev *dp, uint32_t meter_id)
OVS_REQUIRES(dp->meter_locks[meter_id % N_METER_LOCKS])
{
if (dp->meters[meter_id]) {
free(dp->meters[meter_id]);
dp->meters[meter_id] = NULL;
}
}
/* Requires dp_netdev_mutex so that we can't get a new reference to 'dp'
* through the 'dp_netdevs' shash while freeing 'dp'. */
static void
dp_netdev_free(struct dp_netdev *dp)
OVS_REQUIRES(dp_netdev_mutex)
{
struct dp_netdev_port *port, *next;
shash_find_and_delete(&dp_netdevs, dp->name);
ovs_mutex_lock(&dp->port_mutex);
HMAP_FOR_EACH_SAFE (port, next, node, &dp->ports) {
do_del_port(dp, port);
}
ovs_mutex_unlock(&dp->port_mutex);
dp_netdev_destroy_all_pmds(dp, true);
cmap_destroy(&dp->poll_threads);
ovs_mutex_destroy(&dp->tx_qid_pool_mutex);
id_pool_destroy(dp->tx_qid_pool);
ovs_mutex_destroy(&dp->non_pmd_mutex);
ovsthread_key_delete(dp->per_pmd_key);
conntrack_destroy(&dp->conntrack);
seq_destroy(dp->reconfigure_seq);
seq_destroy(dp->port_seq);
hmap_destroy(&dp->ports);
ovs_mutex_destroy(&dp->port_mutex);
/* Upcalls must be disabled at this point */
dp_netdev_destroy_upcall_lock(dp);
int i;
for (i = 0; i < MAX_METERS; ++i) {
meter_lock(dp, i);
dp_delete_meter(dp, i);
meter_unlock(dp, i);
}
for (i = 0; i < N_METER_LOCKS; ++i) {
ovs_mutex_destroy(&dp->meter_locks[i]);
}
free(dp->pmd_cmask);
free(CONST_CAST(char *, dp->name));
free(dp);
}
static void
dp_netdev_unref(struct dp_netdev *dp)
{
if (dp) {
/* Take dp_netdev_mutex so that, if dp->ref_cnt falls to zero, we can't
* get a new reference to 'dp' through the 'dp_netdevs' shash. */
ovs_mutex_lock(&dp_netdev_mutex);
if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
dp_netdev_free(dp);
}
ovs_mutex_unlock(&dp_netdev_mutex);
}
}
static void
dpif_netdev_close(struct dpif *dpif)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
dp_netdev_unref(dp);
free(dpif);
}
static int
dpif_netdev_destroy(struct dpif *dpif)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
if (!atomic_flag_test_and_set(&dp->destroyed)) {
if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
/* Can't happen: 'dpif' still owns a reference to 'dp'. */
OVS_NOT_REACHED();
}
}
return 0;
}
/* Add 'n' to the atomic variable 'var' non-atomically and using relaxed
* load/store semantics. While the increment is not atomic, the load and
* store operations are, making it impossible to read inconsistent values.
*
* This is used to update thread local stats counters. */
static void
non_atomic_ullong_add(atomic_ullong *var, unsigned long long n)
{
unsigned long long tmp;
atomic_read_relaxed(var, &tmp);
tmp += n;
atomic_store_relaxed(var, tmp);
}
static int
dpif_netdev_get_stats(const struct dpif *dpif, struct dpif_dp_stats *stats)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
struct dp_netdev_pmd_thread *pmd;
stats->n_flows = stats->n_hit = stats->n_missed = stats->n_lost = 0;
CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
unsigned long long n;
stats->n_flows += cmap_count(&pmd->flow_table);
atomic_read_relaxed(&pmd->stats.n[DP_STAT_MASKED_HIT], &n);
stats->n_hit += n;
atomic_read_relaxed(&pmd->stats.n[DP_STAT_EXACT_HIT], &n);
stats->n_hit += n;
atomic_read_relaxed(&pmd->stats.n[DP_STAT_MISS], &n);
stats->n_missed += n;
atomic_read_relaxed(&pmd->stats.n[DP_STAT_LOST], &n);
stats->n_lost += n;
}
stats->n_masks = UINT32_MAX;
stats->n_mask_hit = UINT64_MAX;
return 0;
}
static void
dp_netdev_reload_pmd__(struct dp_netdev_pmd_thread *pmd)
{
if (pmd->core_id == NON_PMD_CORE_ID) {
ovs_mutex_lock(&pmd->dp->non_pmd_mutex);
ovs_mutex_lock(&pmd->port_mutex);
pmd_load_cached_ports(pmd);
ovs_mutex_unlock(&pmd->port_mutex);
ovs_mutex_unlock(&pmd->dp->non_pmd_mutex);
return;
}
ovs_mutex_lock(&pmd->cond_mutex);
seq_change(pmd->reload_seq);
atomic_store_relaxed(&pmd->reload, true);
ovs_mutex_cond_wait(&pmd->cond, &pmd->cond_mutex);
ovs_mutex_unlock(&pmd->cond_mutex);
}
static uint32_t
hash_port_no(odp_port_t port_no)
{
return hash_int(odp_to_u32(port_no), 0);
}
static int
port_create(const char *devname, const char *type,
odp_port_t port_no, struct dp_netdev_port **portp)
{
struct netdev_saved_flags *sf;
struct dp_netdev_port *port;
enum netdev_flags flags;
struct netdev *netdev;
int error;
*portp = NULL;
/* Open and validate network device. */
error = netdev_open(devname, type, &netdev);
if (error) {
return error;
}
/* XXX reject non-Ethernet devices */
netdev_get_flags(netdev, &flags);
if (flags & NETDEV_LOOPBACK) {
VLOG_ERR("%s: cannot add a loopback device", devname);
error = EINVAL;
goto out;
}
error = netdev_turn_flags_on(netdev, NETDEV_PROMISC, &sf);
if (error) {
VLOG_ERR("%s: cannot set promisc flag", devname);
goto out;
}
port = xzalloc(sizeof *port);
port->port_no = port_no;
port->netdev = netdev;
port->type = xstrdup(type);
port->sf = sf;
port->need_reconfigure = true;
ovs_mutex_init(&port->txq_used_mutex);
*portp = port;
return 0;
out:
netdev_close(netdev);
return error;
}
static int
do_add_port(struct dp_netdev *dp, const char *devname, const char *type,
odp_port_t port_no)
OVS_REQUIRES(dp->port_mutex)
{
struct dp_netdev_port *port;
int error;
/* Reject devices already in 'dp'. */
if (!get_port_by_name(dp, devname, &port)) {
return EEXIST;
}
error = port_create(devname, type, port_no, &port);
if (error) {
return error;
}
hmap_insert(&dp->ports, &port->node, hash_port_no(port_no));
seq_change(dp->port_seq);
reconfigure_datapath(dp);
return 0;
}
static int
dpif_netdev_port_add(struct dpif *dpif, struct netdev *netdev,
odp_port_t *port_nop)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
const char *dpif_port;
odp_port_t port_no;
int error;
ovs_mutex_lock(&dp->port_mutex);
dpif_port = netdev_vport_get_dpif_port(netdev, namebuf, sizeof namebuf);
if (*port_nop != ODPP_NONE) {
port_no = *port_nop;
error = dp_netdev_lookup_port(dp, *port_nop) ? EBUSY : 0;
} else {
port_no = choose_port(dp, dpif_port);
error = port_no == ODPP_NONE ? EFBIG : 0;
}
if (!error) {
*port_nop = port_no;
error = do_add_port(dp, dpif_port, netdev_get_type(netdev), port_no);
}
ovs_mutex_unlock(&dp->port_mutex);
return error;
}
static int
dpif_netdev_port_del(struct dpif *dpif, odp_port_t port_no)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
int error;
ovs_mutex_lock(&dp->port_mutex);
if (port_no == ODPP_LOCAL) {
error = EINVAL;
} else {
struct dp_netdev_port *port;
error = get_port_by_number(dp, port_no, &port);
if (!error) {
do_del_port(dp, port);
}
}
ovs_mutex_unlock(&dp->port_mutex);
return error;
}
static bool
is_valid_port_number(odp_port_t port_no)
{
return port_no != ODPP_NONE;
}
static struct dp_netdev_port *
dp_netdev_lookup_port(const struct dp_netdev *dp, odp_port_t port_no)
OVS_REQUIRES(dp->port_mutex)
{
struct dp_netdev_port *port;
HMAP_FOR_EACH_WITH_HASH (port, node, hash_port_no(port_no), &dp->ports) {
if (port->port_no == port_no) {
return port;
}
}
return NULL;
}
static int
get_port_by_number(struct dp_netdev *dp,
odp_port_t port_no, struct dp_netdev_port **portp)
OVS_REQUIRES(dp->port_mutex)
{
if (!is_valid_port_number(port_no)) {
*portp = NULL;
return EINVAL;
} else {
*portp = dp_netdev_lookup_port(dp, port_no);
return *portp ? 0 : ENODEV;
}
}
static void
port_destroy(struct dp_netdev_port *port)
{
if (!port) {
return;
}
netdev_close(port->netdev);
netdev_restore_flags(port->sf);
for (unsigned i = 0; i < port->n_rxq; i++) {
netdev_rxq_close(port->rxqs[i].rx);
}
ovs_mutex_destroy(&port->txq_used_mutex);
free(port->rxq_affinity_list);
free(port->txq_used);
free(port->rxqs);
free(port->type);
free(port);
}
static int
get_port_by_name(struct dp_netdev *dp,
const char *devname, struct dp_netdev_port **portp)
OVS_REQUIRES(dp->port_mutex)
{
struct dp_netdev_port *port;
HMAP_FOR_EACH (port, node, &dp->ports) {
if (!strcmp(netdev_get_name(port->netdev), devname)) {
*portp = port;
return 0;
}
}
/* Callers of dpif_netdev_port_query_by_name() expect ENODEV for a non
* existing port. */
return ENODEV;
}
/* Returns 'true' if there is a port with pmd netdev. */
static bool
has_pmd_port(struct dp_netdev *dp)
OVS_REQUIRES(dp->port_mutex)
{
struct dp_netdev_port *port;
HMAP_FOR_EACH (port, node, &dp->ports) {
if (netdev_is_pmd(port->netdev)) {
return true;
}
}
return false;
}
static void
do_del_port(struct dp_netdev *dp, struct dp_netdev_port *port)
OVS_REQUIRES(dp->port_mutex)
{
hmap_remove(&dp->ports, &port->node);
seq_change(dp->port_seq);
reconfigure_datapath(dp);
port_destroy(port);
}
static void
answer_port_query(const struct dp_netdev_port *port,
struct dpif_port *dpif_port)
{
dpif_port->name = xstrdup(netdev_get_name(port->netdev));
dpif_port->type = xstrdup(port->type);
dpif_port->port_no = port->port_no;
}
static int
dpif_netdev_port_query_by_number(const struct dpif *dpif, odp_port_t port_no,
struct dpif_port *dpif_port)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
struct dp_netdev_port *port;
int error;
ovs_mutex_lock(&dp->port_mutex);
error = get_port_by_number(dp, port_no, &port);
if (!error && dpif_port) {
answer_port_query(port, dpif_port);
}
ovs_mutex_unlock(&dp->port_mutex);
return error;
}
static int
dpif_netdev_port_query_by_name(const struct dpif *dpif, const char *devname,
struct dpif_port *dpif_port)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
struct dp_netdev_port *port;
int error;
ovs_mutex_lock(&dp->port_mutex);
error = get_port_by_name(dp, devname, &port);
if (!error && dpif_port) {
answer_port_query(port, dpif_port);
}
ovs_mutex_unlock(&dp->port_mutex);
return error;
}
static void
dp_netdev_flow_free(struct dp_netdev_flow *flow)
{
dp_netdev_actions_free(dp_netdev_flow_get_actions(flow));
free(flow);
}
static void dp_netdev_flow_unref(struct dp_netdev_flow *flow)
{
if (ovs_refcount_unref_relaxed(&flow->ref_cnt) == 1) {
ovsrcu_postpone(dp_netdev_flow_free, flow);
}
}
static uint32_t
dp_netdev_flow_hash(const ovs_u128 *ufid)
{
return ufid->u32[0];
}
static inline struct dpcls *
dp_netdev_pmd_lookup_dpcls(struct dp_netdev_pmd_thread *pmd,
odp_port_t in_port)
{
struct dpcls *cls;
uint32_t hash = hash_port_no(in_port);
CMAP_FOR_EACH_WITH_HASH (cls, node, hash, &pmd->classifiers) {
if (cls->in_port == in_port) {
/* Port classifier exists already */
return cls;
}
}
return NULL;
}
static inline struct dpcls *
dp_netdev_pmd_find_dpcls(struct dp_netdev_pmd_thread *pmd,
odp_port_t in_port)
OVS_REQUIRES(pmd->flow_mutex)
{
struct dpcls *cls = dp_netdev_pmd_lookup_dpcls(pmd, in_port);
uint32_t hash = hash_port_no(in_port);
if (!cls) {
/* Create new classifier for in_port */
cls = xmalloc(sizeof(*cls));
dpcls_init(cls);
cls->in_port = in_port;
cmap_insert(&pmd->classifiers, &cls->node, hash);
VLOG_DBG("Creating dpcls %p for in_port %d", cls, in_port);
}
return cls;
}
static void
dp_netdev_pmd_remove_flow(struct dp_netdev_pmd_thread *pmd,
struct dp_netdev_flow *flow)
OVS_REQUIRES(pmd->flow_mutex)
{
struct cmap_node *node = CONST_CAST(struct cmap_node *, &flow->node);
struct dpcls *cls;
odp_port_t in_port = flow->flow.in_port.odp_port;
cls = dp_netdev_pmd_lookup_dpcls(pmd, in_port);
ovs_assert(cls != NULL);
dpcls_remove(cls, &flow->cr);
cmap_remove(&pmd->flow_table, node, dp_netdev_flow_hash(&flow->ufid));
flow->dead = true;
dp_netdev_flow_unref(flow);
}
static void
dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd)
{
struct dp_netdev_flow *netdev_flow;
ovs_mutex_lock(&pmd->flow_mutex);
CMAP_FOR_EACH (netdev_flow, node, &pmd->flow_table) {
dp_netdev_pmd_remove_flow(pmd, netdev_flow);
}
ovs_mutex_unlock(&pmd->flow_mutex);
}
static int
dpif_netdev_flow_flush(struct dpif *dpif)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
struct dp_netdev_pmd_thread *pmd;
CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
dp_netdev_pmd_flow_flush(pmd);
}
return 0;
}
struct dp_netdev_port_state {
struct hmap_position position;
char *name;
};
static int
dpif_netdev_port_dump_start(const struct dpif *dpif OVS_UNUSED, void **statep)
{
*statep = xzalloc(sizeof(struct dp_netdev_port_state));
return 0;
}
static int
dpif_netdev_port_dump_next(const struct dpif *dpif, void *state_,
struct dpif_port *dpif_port)
{
struct dp_netdev_port_state *state = state_;
struct dp_netdev *dp = get_dp_netdev(dpif);
struct hmap_node *node;
int retval;
ovs_mutex_lock(&dp->port_mutex);
node = hmap_at_position(&dp->ports, &state->position);
if (node) {
struct dp_netdev_port *port;
port = CONTAINER_OF(node, struct dp_netdev_port, node);
free(state->name);
state->name = xstrdup(netdev_get_name(port->netdev));
dpif_port->name = state->name;
dpif_port->type = port->type;
dpif_port->port_no = port->port_no;
retval = 0;
} else {
retval = EOF;
}
ovs_mutex_unlock(&dp->port_mutex);
return retval;
}
static int
dpif_netdev_port_dump_done(const struct dpif *dpif OVS_UNUSED, void *state_)
{
struct dp_netdev_port_state *state = state_;
free(state->name);
free(state);
return 0;
}
static int
dpif_netdev_port_poll(const struct dpif *dpif_, char **devnamep OVS_UNUSED)
{
struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
uint64_t new_port_seq;
int error;
new_port_seq = seq_read(dpif->dp->port_seq);
if (dpif->last_port_seq != new_port_seq) {
dpif->last_port_seq = new_port_seq;
error = ENOBUFS;
} else {
error = EAGAIN;
}
return error;
}
static void
dpif_netdev_port_poll_wait(const struct dpif *dpif_)
{
struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
seq_wait(dpif->dp->port_seq, dpif->last_port_seq);
}
static struct dp_netdev_flow *
dp_netdev_flow_cast(const struct dpcls_rule *cr)
{
return cr ? CONTAINER_OF(cr, struct dp_netdev_flow, cr) : NULL;
}
static bool dp_netdev_flow_ref(struct dp_netdev_flow *flow)
{
return ovs_refcount_try_ref_rcu(&flow->ref_cnt);
}
/* netdev_flow_key utilities.
*
* netdev_flow_key is basically a miniflow. We use these functions
* (netdev_flow_key_clone, netdev_flow_key_equal, ...) instead of the miniflow
* functions (miniflow_clone_inline, miniflow_equal, ...), because:
*
* - Since we are dealing exclusively with miniflows created by
* miniflow_extract(), if the map is different the miniflow is different.
* Therefore we can be faster by comparing the map and the miniflow in a
* single memcmp().
* - These functions can be inlined by the compiler. */
/* Given the number of bits set in miniflow's maps, returns the size of the
* 'netdev_flow_key.mf' */
static inline size_t
netdev_flow_key_size(size_t flow_u64s)
{
return sizeof(struct miniflow) + MINIFLOW_VALUES_SIZE(flow_u64s);
}
static inline bool
netdev_flow_key_equal(const struct netdev_flow_key *a,
const struct netdev_flow_key *b)
{
/* 'b->len' may be not set yet. */
return a->hash == b->hash && !memcmp(&a->mf, &b->mf, a->len);
}
/* Used to compare 'netdev_flow_key' in the exact match cache to a miniflow.
* The maps are compared bitwise, so both 'key->mf' and 'mf' must have been
* generated by miniflow_extract. */
static inline bool
netdev_flow_key_equal_mf(const struct netdev_flow_key *key,
const struct miniflow *mf)
{
return !memcmp(&key->mf, mf, key->len);
}
static inline void
netdev_flow_key_clone(struct netdev_flow_key *dst,
const struct netdev_flow_key *src)
{
memcpy(dst, src,
offsetof(struct netdev_flow_key, mf) + src->len);
}
/* Initialize a netdev_flow_key 'mask' from 'match'. */
static inline void
netdev_flow_mask_init(struct netdev_flow_key *mask,
const struct match *match)
{
uint64_t *dst = miniflow_values(&mask->mf);
struct flowmap fmap;
uint32_t hash = 0;
size_t idx;
/* Only check masks that make sense for the flow. */
flow_wc_map(&match->flow, &fmap);
flowmap_init(&mask->mf.map);
FLOWMAP_FOR_EACH_INDEX(idx, fmap) {
uint64_t mask_u64 = flow_u64_value(&match->wc.masks, idx);
if (mask_u64) {
flowmap_set(&mask->mf.map, idx, 1);
*dst++ = mask_u64;
hash = hash_add64(hash, mask_u64);
}
}
map_t map;
FLOWMAP_FOR_EACH_MAP (map, mask->mf.map) {
hash = hash_add64(hash, map);
}
size_t n = dst - miniflow_get_values(&mask->mf);
mask->hash = hash_finish(hash, n * 8);
mask->len = netdev_flow_key_size(n);
}
/* Initializes 'dst' as a copy of 'flow' masked with 'mask'. */
static inline void
netdev_flow_key_init_masked(struct netdev_flow_key *dst,
const struct flow *flow,
const struct netdev_flow_key *mask)
{
uint64_t *dst_u64 = miniflow_values(&dst->mf);
const uint64_t *mask_u64 = miniflow_get_values(&mask->mf);
uint32_t hash = 0;
uint64_t value;
dst->len = mask->len;
dst->mf = mask->mf; /* Copy maps. */
FLOW_FOR_EACH_IN_MAPS(value, flow, mask->mf.map) {
*dst_u64 = value & *mask_u64++;
hash = hash_add64(hash, *dst_u64++);
}
dst->hash = hash_finish(hash,
(dst_u64 - miniflow_get_values(&dst->mf)) * 8);
}
/* Iterate through netdev_flow_key TNL u64 values specified by 'FLOWMAP'. */
#define NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(VALUE, KEY, FLOWMAP) \
MINIFLOW_FOR_EACH_IN_FLOWMAP(VALUE, &(KEY)->mf, FLOWMAP)
/* Returns a hash value for the bits of 'key' where there are 1-bits in
* 'mask'. */
static inline uint32_t
netdev_flow_key_hash_in_mask(const struct netdev_flow_key *key,
const struct netdev_flow_key *mask)
{
const uint64_t *p = miniflow_get_values(&mask->mf);
uint32_t hash = 0;
uint64_t value;
NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(value, key, mask->mf.map) {
hash = hash_add64(hash, value & *p++);
}
return hash_finish(hash, (p - miniflow_get_values(&mask->mf)) * 8);
}
static inline bool
emc_entry_alive(struct emc_entry *ce)
{
return ce->flow && !ce->flow->dead;
}
static void
emc_clear_entry(struct emc_entry *ce)
{
if (ce->flow) {
dp_netdev_flow_unref(ce->flow);
ce->flow = NULL;
}
}
static inline void
emc_change_entry(struct emc_entry *ce, struct dp_netdev_flow *flow,
const struct netdev_flow_key *key)
{
if (ce->flow != flow) {
if (ce->flow) {
dp_netdev_flow_unref(ce->flow);
}
if (dp_netdev_flow_ref(flow)) {
ce->flow = flow;
} else {
ce->flow = NULL;
}
}
if (key) {
netdev_flow_key_clone(&ce->key, key);
}
}
static inline void
emc_insert(struct emc_cache *cache, const struct netdev_flow_key *key,
struct dp_netdev_flow *flow)
{
struct emc_entry *to_be_replaced = NULL;
struct emc_entry *current_entry;
EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
if (netdev_flow_key_equal(&current_entry->key, key)) {
/* We found the entry with the 'mf' miniflow */
emc_change_entry(current_entry, flow, NULL);
return;
}
/* Replacement policy: put the flow in an empty (not alive) entry, or
* in the first entry where it can be */
if (!to_be_replaced
|| (emc_entry_alive(to_be_replaced)
&& !emc_entry_alive(current_entry))
|| current_entry->key.hash < to_be_replaced->key.hash) {
to_be_replaced = current_entry;
}
}
/* We didn't find the miniflow in the cache.
* The 'to_be_replaced' entry is where the new flow will be stored */
emc_change_entry(to_be_replaced, flow, key);
}
static inline void
emc_probabilistic_insert(struct dp_netdev_pmd_thread *pmd,
const struct netdev_flow_key *key,
struct dp_netdev_flow *flow)
{
/* Insert an entry into the EMC based on probability value 'min'. By
* default the value is UINT32_MAX / 100 which yields an insertion
* probability of 1/100 ie. 1% */
uint32_t min;
atomic_read_relaxed(&pmd->dp->emc_insert_min, &min);
if (min && random_uint32() <= min) {
emc_insert(&pmd->flow_cache, key, flow);
}
}
static inline struct dp_netdev_flow *
emc_lookup(struct emc_cache *cache, const struct netdev_flow_key *key)
{
struct emc_entry *current_entry;
EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
if (current_entry->key.hash == key->hash
&& emc_entry_alive(current_entry)
&& netdev_flow_key_equal_mf(&current_entry->key, &key->mf)) {
/* We found the entry with the 'key->mf' miniflow */
return current_entry->flow;
}
}
return NULL;
}
static struct dp_netdev_flow *
dp_netdev_pmd_lookup_flow(struct dp_netdev_pmd_thread *pmd,
const struct netdev_flow_key *key,
int *lookup_num_p)
{
struct dpcls *cls;
struct dpcls_rule *rule;
odp_port_t in_port = u32_to_odp(MINIFLOW_GET_U32(&key->mf, in_port));
struct dp_netdev_flow *netdev_flow = NULL;
cls = dp_netdev_pmd_lookup_dpcls(pmd, in_port);
if (OVS_LIKELY(cls)) {
dpcls_lookup(cls, key, &rule, 1, lookup_num_p);
netdev_flow = dp_netdev_flow_cast(rule);
}
return netdev_flow;
}
static struct dp_netdev_flow *
dp_netdev_pmd_find_flow(const struct dp_netdev_pmd_thread *pmd,
const ovs_u128 *ufidp, const struct nlattr *key,
size_t key_len)
{
struct dp_netdev_flow *netdev_flow;
struct flow flow;
ovs_u128 ufid;
/* If a UFID is not provided, determine one based on the key. */
if (!ufidp && key && key_len
&& !dpif_netdev_flow_from_nlattrs(key, key_len, &flow, false)) {
dpif_flow_hash(pmd->dp->dpif, &flow, sizeof flow, &ufid);
ufidp = &ufid;
}
if (ufidp) {
CMAP_FOR_EACH_WITH_HASH (netdev_flow, node, dp_netdev_flow_hash(ufidp),
&pmd->flow_table) {
if (ovs_u128_equals(netdev_flow->ufid, *ufidp)) {
return netdev_flow;
}
}
}
return NULL;
}
static void
get_dpif_flow_stats(const struct dp_netdev_flow *netdev_flow_,
struct dpif_flow_stats *stats)
{
struct dp_netdev_flow *netdev_flow;
unsigned long long n;
long long used;
uint16_t flags;
netdev_flow = CONST_CAST(struct dp_netdev_flow *, netdev_flow_);
atomic_read_relaxed(&netdev_flow->stats.packet_count, &n);
stats->n_packets = n;
atomic_read_relaxed(&netdev_flow->stats.byte_count, &n);
stats->n_bytes = n;
atomic_read_relaxed(&netdev_flow->stats.used, &used);
stats->used = used;
atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
stats->tcp_flags = flags;
}
/* Converts to the dpif_flow format, using 'key_buf' and 'mask_buf' for
* storing the netlink-formatted key/mask. 'key_buf' may be the same as
* 'mask_buf'. Actions will be returned without copying, by relying on RCU to
* protect them. */
static void
dp_netdev_flow_to_dpif_flow(const struct dp_netdev_flow *netdev_flow,
struct ofpbuf *key_buf, struct ofpbuf *mask_buf,
struct dpif_flow *flow, bool terse)
{
if (terse) {
memset(flow, 0, sizeof *flow);
} else {
struct flow_wildcards wc;
struct dp_netdev_actions *actions;
size_t offset;
struct odp_flow_key_parms odp_parms = {
.flow = &netdev_flow->flow,
.mask = &wc.masks,
.support = dp_netdev_support,
};
miniflow_expand(&netdev_flow->cr.mask->mf, &wc.masks);
/* in_port is exact matched, but we have left it out from the mask for
* optimnization reasons. Add in_port back to the mask. */
wc.masks.in_port.odp_port = ODPP_NONE;
/* Key */
offset = key_buf->size;
flow->key = ofpbuf_tail(key_buf);
odp_flow_key_from_flow(&odp_parms, key_buf);
flow->key_len = key_buf->size - offset;
/* Mask */
offset = mask_buf->size;
flow->mask = ofpbuf_tail(mask_buf);
odp_parms.key_buf = key_buf;
odp_flow_key_from_mask(&odp_parms, mask_buf);
flow->mask_len = mask_buf->size - offset;
/* Actions */
actions = dp_netdev_flow_get_actions(netdev_flow);
flow->actions = actions->actions;
flow->actions_len = actions->size;
}
flow->ufid = netdev_flow->ufid;
flow->ufid_present = true;
flow->pmd_id = netdev_flow->pmd_id;
get_dpif_flow_stats(netdev_flow, &flow->stats);
}
static int
dpif_netdev_mask_from_nlattrs(const struct nlattr *key, uint32_t key_len,
const struct nlattr *mask_key,
uint32_t mask_key_len, const struct flow *flow,
struct flow_wildcards *wc, bool probe)
{
enum odp_key_fitness fitness;
fitness = odp_flow_key_to_mask(mask_key, mask_key_len, wc, flow);
if (fitness) {
if (!probe) {
/* This should not happen: it indicates that
* odp_flow_key_from_mask() and odp_flow_key_to_mask()
* disagree on the acceptable form of a mask. Log the problem
* as an error, with enough details to enable debugging. */
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
if (!VLOG_DROP_ERR(&rl)) {
struct ds s;
ds_init(&s);
odp_flow_format(key, key_len, mask_key, mask_key_len, NULL, &s,
true);
VLOG_ERR("internal error parsing flow mask %s (%s)",
ds_cstr(&s), odp_key_fitness_to_string(fitness));
ds_destroy(&s);
}
}
return EINVAL;
}
return 0;
}
static int
dpif_netdev_flow_from_nlattrs(const struct nlattr *key, uint32_t key_len,
struct flow *flow, bool probe)
{
if (odp_flow_key_to_flow(key, key_len, flow)) {
if (!probe) {
/* This should not happen: it indicates that
* odp_flow_key_from_flow() and odp_flow_key_to_flow() disagree on
* the acceptable form of a flow. Log the problem as an error,
* with enough details to enable debugging. */
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
if (!VLOG_DROP_ERR(&rl)) {
struct ds s;
ds_init(&s);
odp_flow_format(key, key_len, NULL, 0, NULL, &s, true);
VLOG_ERR("internal error parsing flow key %s", ds_cstr(&s));
ds_destroy(&s);
}
}
return EINVAL;
}
if (flow->ct_state & DP_NETDEV_CS_UNSUPPORTED_MASK) {
return EINVAL;
}
return 0;
}
static int
dpif_netdev_flow_get(const struct dpif *dpif, const struct dpif_flow_get *get)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
struct dp_netdev_flow *netdev_flow;
struct dp_netdev_pmd_thread *pmd;
struct hmapx to_find = HMAPX_INITIALIZER(&to_find);
struct hmapx_node *node;
int error = EINVAL;
if (get->pmd_id == PMD_ID_NULL) {
CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
if (dp_netdev_pmd_try_ref(pmd) && !hmapx_add(&to_find, pmd)) {
dp_netdev_pmd_unref(pmd);
}
}
} else {
pmd = dp_netdev_get_pmd(dp, get->pmd_id);
if (!pmd) {
goto out;
}
hmapx_add(&to_find, pmd);
}
if (!hmapx_count(&to_find)) {
goto out;
}
HMAPX_FOR_EACH (node, &to_find) {
pmd = (struct dp_netdev_pmd_thread *) node->data;
netdev_flow = dp_netdev_pmd_find_flow(pmd, get->ufid, get->key,
get->key_len);
if (netdev_flow) {
dp_netdev_flow_to_dpif_flow(netdev_flow, get->buffer, get->buffer,
get->flow, false);
error = 0;
break;
} else {
error = ENOENT;
}
}
HMAPX_FOR_EACH (node, &to_find) {
pmd = (struct dp_netdev_pmd_thread *) node->data;
dp_netdev_pmd_unref(pmd);
}
out:
hmapx_destroy(&to_find);
return error;
}
static struct dp_netdev_flow *
dp_netdev_flow_add(struct dp_netdev_pmd_thread *pmd,
struct match *match, const ovs_u128 *ufid,
const struct nlattr *actions, size_t actions_len)
OVS_REQUIRES(pmd->flow_mutex)
{
struct dp_netdev_flow *flow;
struct netdev_flow_key mask;
struct dpcls *cls;
/* Make sure in_port is exact matched before we read it. */
ovs_assert(match->wc.masks.in_port.odp_port == ODPP_NONE);
odp_port_t in_port = match->flow.in_port.odp_port;
/* As we select the dpcls based on the port number, each netdev flow
* belonging to the same dpcls will have the same odp_port value.
* For performance reasons we wildcard odp_port here in the mask. In the
* typical case dp_hash is also wildcarded, and the resulting 8-byte
* chunk {dp_hash, in_port} will be ignored by netdev_flow_mask_init() and
* will not be part of the subtable mask.
* This will speed up the hash computation during dpcls_lookup() because
* there is one less call to hash_add64() in this case. */
match->wc.masks.in_port.odp_port = 0;
netdev_flow_mask_init(&mask, match);
match->wc.masks.in_port.odp_port = ODPP_NONE;
/* Make sure wc does not have metadata. */
ovs_assert(!FLOWMAP_HAS_FIELD(&mask.mf.map, metadata)
&& !FLOWMAP_HAS_FIELD(&mask.mf.map, regs));
/* Do not allocate extra space. */
flow = xmalloc(sizeof *flow - sizeof flow->cr.flow.mf + mask.len);
memset(&flow->stats, 0, sizeof flow->stats);
flow->dead = false;
flow->batch = NULL;
*CONST_CAST(unsigned *, &flow->pmd_id) = pmd->core_id;
*CONST_CAST(struct flow *, &flow->flow) = match->flow;
*CONST_CAST(ovs_u128 *, &flow->ufid) = *ufid;
ovs_refcount_init(&flow->ref_cnt);
ovsrcu_set(&flow->actions, dp_netdev_actions_create(actions, actions_len));
netdev_flow_key_init_masked(&flow->cr.flow, &match->flow, &mask);
/* Select dpcls for in_port. Relies on in_port to be exact match. */
cls = dp_netdev_pmd_find_dpcls(pmd, in_port);
dpcls_insert(cls, &flow->cr, &mask);
cmap_insert(&pmd->flow_table, CONST_CAST(struct cmap_node *, &flow->node),
dp_netdev_flow_hash(&flow->ufid));
if (OVS_UNLIKELY(!VLOG_DROP_DBG((&upcall_rl)))) {
struct ds ds = DS_EMPTY_INITIALIZER;
struct ofpbuf key_buf, mask_buf;
struct odp_flow_key_parms odp_parms = {
.flow = &match->flow,
.mask = &match->wc.masks,
.support = dp_netdev_support,
};
ofpbuf_init(&key_buf, 0);
ofpbuf_init(&mask_buf, 0);
odp_flow_key_from_flow(&odp_parms, &key_buf);
odp_parms.key_buf = &key_buf;
odp_flow_key_from_mask(&odp_parms, &mask_buf);
ds_put_cstr(&ds, "flow_add: ");
odp_format_ufid(ufid, &ds);
ds_put_cstr(&ds, " ");
odp_flow_format(key_buf.data, key_buf.size,
mask_buf.data, mask_buf.size,
NULL, &ds, false);
ds_put_cstr(&ds, ", actions:");
format_odp_actions(&ds, actions, actions_len, NULL);
VLOG_DBG("%s", ds_cstr(&ds));
ofpbuf_uninit(&key_buf);
ofpbuf_uninit(&mask_buf);
/* Add a printout of the actual match installed. */
struct match m;
ds_clear(&ds);
ds_put_cstr(&ds, "flow match: ");
miniflow_expand(&flow->cr.flow.mf, &m.flow);
miniflow_expand(&flow->cr.mask->mf, &m.wc.masks);
memset(&m.tun_md, 0, sizeof m.tun_md);
match_format(&m, NULL, &ds, OFP_DEFAULT_PRIORITY);
VLOG_DBG("%s", ds_cstr(&ds));
ds_destroy(&ds);
}
return flow;
}
static int
flow_put_on_pmd(struct dp_netdev_pmd_thread *pmd,
struct netdev_flow_key *key,
struct match *match,
ovs_u128 *ufid,
const struct dpif_flow_put *put,
struct dpif_flow_stats *stats)
{
struct dp_netdev_flow *netdev_flow;
int error = 0;
if (stats) {
memset(stats, 0, sizeof *stats);
}
ovs_mutex_lock(&pmd->flow_mutex);
netdev_flow = dp_netdev_pmd_lookup_flow(pmd, key, NULL);
if (!netdev_flow) {
if (put->flags & DPIF_FP_CREATE) {
if (cmap_count(&pmd->flow_table) < MAX_FLOWS) {
dp_netdev_flow_add(pmd, match, ufid, put->actions,
put->actions_len);
error = 0;
} else {
error = EFBIG;
}
} else {
error = ENOENT;
}
} else {
if (put->flags & DPIF_FP_MODIFY) {
struct dp_netdev_actions *new_actions;
struct dp_netdev_actions *old_actions;
new_actions = dp_netdev_actions_create(put->actions,
put->actions_len);
old_actions = dp_netdev_flow_get_actions(netdev_flow);
ovsrcu_set(&netdev_flow->actions, new_actions);
if (stats) {
get_dpif_flow_stats(netdev_flow, stats);
}
if (put->flags & DPIF_FP_ZERO_STATS) {
/* XXX: The userspace datapath uses thread local statistics
* (for flows), which should be updated only by the owning
* thread. Since we cannot write on stats memory here,
* we choose not to support this flag. Please note:
* - This feature is currently used only by dpctl commands with
* option --clear.
* - Should the need arise, this operation can be implemented
* by keeping a base value (to be update here) for each
* counter, and subtracting it before outputting the stats */
error = EOPNOTSUPP;
}
ovsrcu_postpone(dp_netdev_actions_free, old_actions);
} else if (put->flags & DPIF_FP_CREATE) {
error = EEXIST;
} else {
/* Overlapping flow. */
error = EINVAL;
}
}
ovs_mutex_unlock(&pmd->flow_mutex);
return error;
}
static int
dpif_netdev_flow_put(struct dpif *dpif, const struct dpif_flow_put *put)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
struct netdev_flow_key key, mask;
struct dp_netdev_pmd_thread *pmd;
struct match match;
ovs_u128 ufid;
int error;
bool probe = put->flags & DPIF_FP_PROBE;
if (put->stats) {
memset(put->stats, 0, sizeof *put->stats);
}
error = dpif_netdev_flow_from_nlattrs(put->key, put->key_len, &match.flow,
probe);
if (error) {
return error;
}
error = dpif_netdev_mask_from_nlattrs(put->key, put->key_len,
put->mask, put->mask_len,
&match.flow, &match.wc, probe);
if (error) {
return error;
}
if (put->ufid) {
ufid = *put->ufid;
} else {
dpif_flow_hash(dpif, &match.flow, sizeof match.flow, &ufid);
}
/* Must produce a netdev_flow_key for lookup.
* Use the same method as employed to create the key when adding
* the flow to the dplcs to make sure they match. */
netdev_flow_mask_init(&mask, &match);
netdev_flow_key_init_masked(&key, &match.flow, &mask);
if (put->pmd_id == PMD_ID_NULL) {
if (cmap_count(&dp->poll_threads) == 0) {
return EINVAL;
}
CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
struct dpif_flow_stats pmd_stats;
int pmd_error;
pmd_error = flow_put_on_pmd(pmd, &key, &match, &ufid, put,
&pmd_stats);
if (pmd_error) {
error = pmd_error;
} else if (put->stats) {
put->stats->n_packets += pmd_stats.n_packets;
put->stats->n_bytes += pmd_stats.n_bytes;
put->stats->used = MAX(put->stats->used, pmd_stats.used);
put->stats->tcp_flags |= pmd_stats.tcp_flags;
}
}
} else {
pmd = dp_netdev_get_pmd(dp, put->pmd_id);
if (!pmd) {
return EINVAL;
}
error = flow_put_on_pmd(pmd, &key, &match, &ufid, put, put->stats);
dp_netdev_pmd_unref(pmd);
}
return error;
}
static int
flow_del_on_pmd(struct dp_netdev_pmd_thread *pmd,
struct dpif_flow_stats *stats,
const struct dpif_flow_del *del)
{
struct dp_netdev_flow *netdev_flow;
int error = 0;
ovs_mutex_lock(&pmd->flow_mutex);
netdev_flow = dp_netdev_pmd_find_flow(pmd, del->ufid, del->key,
del->key_len);
if (netdev_flow) {
if (stats) {
get_dpif_flow_stats(netdev_flow, stats);
}
dp_netdev_pmd_remove_flow(pmd, netdev_flow);
} else {
error = ENOENT;
}
ovs_mutex_unlock(&pmd->flow_mutex);
return error;
}
static int
dpif_netdev_flow_del(struct dpif *dpif, const struct dpif_flow_del *del)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
struct dp_netdev_pmd_thread *pmd;
int error = 0;
if (del->stats) {
memset(del->stats, 0, sizeof *del->stats);
}
if (del->pmd_id == PMD_ID_NULL) {
if (cmap_count(&dp->poll_threads) == 0) {
return EINVAL;
}
CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
struct dpif_flow_stats pmd_stats;
int pmd_error;
pmd_error = flow_del_on_pmd(pmd, &pmd_stats, del);
if (pmd_error) {
error = pmd_error;
} else if (del->stats) {
del->stats->n_packets += pmd_stats.n_packets;
del->stats->n_bytes += pmd_stats.n_bytes;
del->stats->used = MAX(del->stats->used, pmd_stats.used);
del->stats->tcp_flags |= pmd_stats.tcp_flags;
}
}
} else {
pmd = dp_netdev_get_pmd(dp, del->pmd_id);
if (!pmd) {
return EINVAL;
}
error = flow_del_on_pmd(pmd, del->stats, del);
dp_netdev_pmd_unref(pmd);
}
return error;
}
struct dpif_netdev_flow_dump {
struct dpif_flow_dump up;
struct cmap_position poll_thread_pos;
struct cmap_position flow_pos;
struct dp_netdev_pmd_thread *cur_pmd;
int status;
struct ovs_mutex mutex;
};
static struct dpif_netdev_flow_dump *
dpif_netdev_flow_dump_cast(struct dpif_flow_dump *dump)
{
return CONTAINER_OF(dump, struct dpif_netdev_flow_dump, up);
}
static struct dpif_flow_dump *
dpif_netdev_flow_dump_create(const struct dpif *dpif_, bool terse,
char *type OVS_UNUSED)
{
struct dpif_netdev_flow_dump *dump;
dump = xzalloc(sizeof *dump);
dpif_flow_dump_init(&dump->up, dpif_);
dump->up.terse = terse;
ovs_mutex_init(&dump->mutex);
return &dump->up;
}
static int
dpif_netdev_flow_dump_destroy(struct dpif_flow_dump *dump_)
{
struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
ovs_mutex_destroy(&dump->mutex);
free(dump);
return 0;
}
struct dpif_netdev_flow_dump_thread {
struct dpif_flow_dump_thread up;
struct dpif_netdev_flow_dump *dump;
struct odputil_keybuf keybuf[FLOW_DUMP_MAX_BATCH];
struct odputil_keybuf maskbuf[FLOW_DUMP_MAX_BATCH];
};
static struct dpif_netdev_flow_dump_thread *
dpif_netdev_flow_dump_thread_cast(struct dpif_flow_dump_thread *thread)
{
return CONTAINER_OF(thread, struct dpif_netdev_flow_dump_thread, up);
}
static struct dpif_flow_dump_thread *
dpif_netdev_flow_dump_thread_create(struct dpif_flow_dump *dump_)
{
struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
struct dpif_netdev_flow_dump_thread *thread;
thread = xmalloc(sizeof *thread);
dpif_flow_dump_thread_init(&thread->up, &dump->up);
thread->dump = dump;
return &thread->up;
}
static void
dpif_netdev_flow_dump_thread_destroy(struct dpif_flow_dump_thread *thread_)
{
struct dpif_netdev_flow_dump_thread *thread
= dpif_netdev_flow_dump_thread_cast(thread_);
free(thread);
}
static int
dpif_netdev_flow_dump_next(struct dpif_flow_dump_thread *thread_,
struct dpif_flow *flows, int max_flows)
{
struct dpif_netdev_flow_dump_thread *thread
= dpif_netdev_flow_dump_thread_cast(thread_);
struct dpif_netdev_flow_dump *dump = thread->dump;
struct dp_netdev_flow *netdev_flows[FLOW_DUMP_MAX_BATCH];
int n_flows = 0;
int i;
ovs_mutex_lock(&dump->mutex);
if (!dump->status) {
struct dpif_netdev *dpif = dpif_netdev_cast(thread->up.dpif);
struct dp_netdev *dp = get_dp_netdev(&dpif->dpif);
struct dp_netdev_pmd_thread *pmd = dump->cur_pmd;
int flow_limit = MIN(max_flows, FLOW_DUMP_MAX_BATCH);
/* First call to dump_next(), extracts the first pmd thread.
* If there is no pmd thread, returns immediately. */
if (!pmd) {
pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
if (!pmd) {
ovs_mutex_unlock(&dump->mutex);
return n_flows;
}
}
do {
for (n_flows = 0; n_flows < flow_limit; n_flows++) {
struct cmap_node *node;
node = cmap_next_position(&pmd->flow_table, &dump->flow_pos);
if (!node) {
break;
}
netdev_flows[n_flows] = CONTAINER_OF(node,
struct dp_netdev_flow,
node);
}
/* When finishing dumping the current pmd thread, moves to
* the next. */
if (n_flows < flow_limit) {
memset(&dump->flow_pos, 0, sizeof dump->flow_pos);
dp_netdev_pmd_unref(pmd);
pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
if (!pmd) {
dump->status = EOF;
break;
}
}
/* Keeps the reference to next caller. */
dump->cur_pmd = pmd;
/* If the current dump is empty, do not exit the loop, since the
* remaining pmds could have flows to be dumped. Just dumps again
* on the new 'pmd'. */
} while (!n_flows);
}
ovs_mutex_unlock(&dump->mutex);
for (i = 0; i < n_flows; i++) {
struct odputil_keybuf *maskbuf = &thread->maskbuf[i];
struct odputil_keybuf *keybuf = &thread->keybuf[i];
struct dp_netdev_flow *netdev_flow = netdev_flows[i];
struct dpif_flow *f = &flows[i];
struct ofpbuf key, mask;
ofpbuf_use_stack(&key, keybuf, sizeof *keybuf);
ofpbuf_use_stack(&mask, maskbuf, sizeof *maskbuf);
dp_netdev_flow_to_dpif_flow(netdev_flow, &key, &mask, f,
dump->up.terse);
}
return n_flows;
}
static int
dpif_netdev_execute(struct dpif *dpif, struct dpif_execute *execute)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
struct dp_netdev *dp = get_dp_netdev(dpif);
struct dp_netdev_pmd_thread *pmd;
struct dp_packet_batch pp;
if (dp_packet_size(execute->packet) < ETH_HEADER_LEN ||
dp_packet_size(execute->packet) > UINT16_MAX) {
return EINVAL;
}
/* Tries finding the 'pmd'. If NULL is returned, that means
* the current thread is a non-pmd thread and should use
* dp_netdev_get_pmd(dp, NON_PMD_CORE_ID). */
pmd = ovsthread_getspecific(dp->per_pmd_key);
if (!pmd) {
pmd = dp_netdev_get_pmd(dp, NON_PMD_CORE_ID);
if (!pmd) {
return EBUSY;
}
}
if (execute->probe) {
/* If this is part of a probe, Drop the packet, since executing
* the action may actually cause spurious packets be sent into
* the network. */
return 0;
}
/* If the current thread is non-pmd thread, acquires
* the 'non_pmd_mutex'. */
if (pmd->core_id == NON_PMD_CORE_ID) {
ovs_mutex_lock(&dp->non_pmd_mutex);
}
/* The action processing expects the RSS hash to be valid, because
* it's always initialized at the beginning of datapath processing.
* In this case, though, 'execute->packet' may not have gone through
* the datapath at all, it may have been generated by the upper layer
* (OpenFlow packet-out, BFD frame, ...). */
if (!dp_packet_rss_valid(execute->packet)) {
dp_packet_set_rss_hash(execute->packet,
flow_hash_5tuple(execute->flow, 0));
}
dp_packet_batch_init_packet(&pp, execute->packet);
dp_netdev_execute_actions(pmd, &pp, false, execute->flow,
execute->actions, execute->actions_len,
time_msec());
if (pmd->core_id == NON_PMD_CORE_ID) {
ovs_mutex_unlock(&dp->non_pmd_mutex);
dp_netdev_pmd_unref(pmd);
}
return 0;
}
static void
dpif_netdev_operate(struct dpif *dpif, struct dpif_op **ops, size_t n_ops)
{
size_t i;
for (i = 0; i < n_ops; i++) {
struct dpif_op *op = ops[i];
switch (op->type) {
case DPIF_OP_FLOW_PUT:
op->error = dpif_netdev_flow_put(dpif, &op->u.flow_put);
break;
case DPIF_OP_FLOW_DEL:
op->error = dpif_netdev_flow_del(dpif, &op->u.flow_del);
break;
case DPIF_OP_EXECUTE:
op->error = dpif_netdev_execute(dpif, &op->u.execute);
break;
case DPIF_OP_FLOW_GET:
op->error = dpif_netdev_flow_get(dpif, &op->u.flow_get);
break;
}
}
}
/* Applies datapath configuration from the database. Some of the changes are
* actually applied in dpif_netdev_run(). */
static int
dpif_netdev_set_config(struct dpif *dpif, const struct smap *other_config)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
const char *cmask = smap_get(other_config, "pmd-cpu-mask");
unsigned long long insert_prob =
smap_get_ullong(other_config, "emc-insert-inv-prob",
DEFAULT_EM_FLOW_INSERT_INV_PROB);
uint32_t insert_min, cur_min;
if (!nullable_string_is_equal(dp->pmd_cmask, cmask)) {
free(dp->pmd_cmask);
dp->pmd_cmask = nullable_xstrdup(cmask);
dp_netdev_request_reconfigure(dp);
}
atomic_read_relaxed(&dp->emc_insert_min, &cur_min);
if (insert_prob <= UINT32_MAX) {
insert_min = insert_prob == 0 ? 0 : UINT32_MAX / insert_prob;
} else {
insert_min = DEFAULT_EM_FLOW_INSERT_MIN;
insert_prob = DEFAULT_EM_FLOW_INSERT_INV_PROB;
}
if (insert_min != cur_min) {
atomic_store_relaxed(&dp->emc_insert_min, insert_min);
if (insert_min == 0) {
VLOG_INFO("EMC has been disabled");
} else {
VLOG_INFO("EMC insertion probability changed to 1/%llu (~%.2f%%)",
insert_prob, (100 / (float)insert_prob));
}
}
return 0;
}
/* Parses affinity list and returns result in 'core_ids'. */
static int
parse_affinity_list(const char *affinity_list, unsigned *core_ids, int n_rxq)
{
unsigned i;
char *list, *copy, *key, *value;
int error = 0;
for (i = 0; i < n_rxq; i++) {
core_ids[i] = OVS_CORE_UNSPEC;
}
if (!affinity_list) {
return 0;
}
list = copy = xstrdup(affinity_list);
while (ofputil_parse_key_value(&list, &key, &value)) {
int rxq_id, core_id;
if (!str_to_int(key, 0, &rxq_id) || rxq_id < 0
|| !str_to_int(value, 0, &core_id) || core_id < 0) {
error = EINVAL;
break;
}
if (rxq_id < n_rxq) {
core_ids[rxq_id] = core_id;
}
}
free(copy);
return error;
}
/* Parses 'affinity_list' and applies configuration if it is valid. */
static int
dpif_netdev_port_set_rxq_affinity(struct dp_netdev_port *port,
const char *affinity_list)
{
unsigned *core_ids, i;
int error = 0;
core_ids = xmalloc(port->n_rxq * sizeof *core_ids);
if (parse_affinity_list(affinity_list, core_ids, port->n_rxq)) {
error = EINVAL;
goto exit;
}
for (i = 0; i < port->n_rxq; i++) {
port->rxqs[i].core_id = core_ids[i];
}
exit:
free(core_ids);
return error;
}
/* Changes the affinity of port's rx queues. The changes are actually applied
* in dpif_netdev_run(). */
static int
dpif_netdev_port_set_config(struct dpif *dpif, odp_port_t port_no,
const struct smap *cfg)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
struct dp_netdev_port *port;
int error = 0;
const char *affinity_list = smap_get(cfg, "pmd-rxq-affinity");
ovs_mutex_lock(&dp->port_mutex);
error = get_port_by_number(dp, port_no, &port);
if (error || !netdev_is_pmd(port->netdev)
|| nullable_string_is_equal(affinity_list, port->rxq_affinity_list)) {
goto unlock;
}
error = dpif_netdev_port_set_rxq_affinity(port, affinity_list);
if (error) {
goto unlock;
}
free(port->rxq_affinity_list);
port->rxq_affinity_list = nullable_xstrdup(affinity_list);
dp_netdev_request_reconfigure(dp);
unlock:
ovs_mutex_unlock(&dp->port_mutex);
return error;
}
static int
dpif_netdev_queue_to_priority(const struct dpif *dpif OVS_UNUSED,
uint32_t queue_id, uint32_t *priority)
{
*priority = queue_id;
return 0;
}
/* Creates and returns a new 'struct dp_netdev_actions', whose actions are
* a copy of the 'size' bytes of 'actions' input parameters. */
struct dp_netdev_actions *
dp_netdev_actions_create(const struct nlattr *actions, size_t size)
{
struct dp_netdev_actions *netdev_actions;
netdev_actions = xmalloc(sizeof *netdev_actions + size);
memcpy(netdev_actions->actions, actions, size);
netdev_actions->size = size;
return netdev_actions;
}
struct dp_netdev_actions *
dp_netdev_flow_get_actions(const struct dp_netdev_flow *flow)
{
return ovsrcu_get(struct dp_netdev_actions *, &flow->actions);
}
static void
dp_netdev_actions_free(struct dp_netdev_actions *actions)
{
free(actions);
}
static inline unsigned long long
cycles_counter(void)
{
#ifdef DPDK_NETDEV
return rte_get_tsc_cycles();
#else
return 0;
#endif
}
/* Fake mutex to make sure that the calls to cycles_count_* are balanced */
extern struct ovs_mutex cycles_counter_fake_mutex;
/* Start counting cycles. Must be followed by 'cycles_count_end()' */
static inline void
cycles_count_start(struct dp_netdev_pmd_thread *pmd)
OVS_ACQUIRES(&cycles_counter_fake_mutex)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
pmd->last_cycles = cycles_counter();
}
/* Stop counting cycles and add them to the counter 'type' */
static inline void
cycles_count_end(struct dp_netdev_pmd_thread *pmd,
enum pmd_cycles_counter_type type)
OVS_RELEASES(&cycles_counter_fake_mutex)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
unsigned long long interval = cycles_counter() - pmd->last_cycles;
non_atomic_ullong_add(&pmd->cycles.n[type], interval);
}
/* Calculate the intermediate cycle result and add to the counter 'type' */
static inline void
cycles_count_intermediate(struct dp_netdev_pmd_thread *pmd,
struct dp_netdev_rxq *rxq,
enum pmd_cycles_counter_type type)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
unsigned long long new_cycles = cycles_counter();
unsigned long long interval = new_cycles - pmd->last_cycles;
pmd->last_cycles = new_cycles;
non_atomic_ullong_add(&pmd->cycles.n[type], interval);
if (rxq && (type == PMD_CYCLES_PROCESSING)) {
/* Add to the amount of current processing cycles. */
non_atomic_ullong_add(&rxq->cycles[RXQ_CYCLES_PROC_CURR], interval);
}
}
static void
dp_netdev_rxq_set_cycles(struct dp_netdev_rxq *rx,
enum rxq_cycles_counter_type type,
unsigned long long cycles)
{
atomic_store_relaxed(&rx->cycles[type], cycles);
}
static uint64_t
dp_netdev_rxq_get_cycles(struct dp_netdev_rxq *rx,
enum rxq_cycles_counter_type type)
{
unsigned long long processing_cycles;
atomic_read_relaxed(&rx->cycles[type], &processing_cycles);
return processing_cycles;
}
static void
dp_netdev_rxq_set_intrvl_cycles(struct dp_netdev_rxq *rx,
unsigned long long cycles)
{
unsigned int idx = rx->intrvl_idx++ % PMD_RXQ_INTERVAL_MAX;
atomic_store_relaxed(&rx->cycles_intrvl[idx], cycles);
}
static uint64_t
dp_netdev_rxq_get_intrvl_cycles(struct dp_netdev_rxq *rx, unsigned idx)
{
unsigned long long processing_cycles;
atomic_read_relaxed(&rx->cycles_intrvl[idx], &processing_cycles);
return processing_cycles;
}
static int
dp_netdev_process_rxq_port(struct dp_netdev_pmd_thread *pmd,
struct netdev_rxq *rx,
odp_port_t port_no)
{
struct dp_packet_batch batch;
int error;
int batch_cnt = 0;
dp_packet_batch_init(&batch);
error = netdev_rxq_recv(rx, &batch);
if (!error) {
*recirc_depth_get() = 0;
batch_cnt = batch.count;
dp_netdev_input(pmd, &batch, port_no);
} else if (error != EAGAIN && error != EOPNOTSUPP) {
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
VLOG_ERR_RL(&rl, "error receiving data from %s: %s",
netdev_rxq_get_name(rx), ovs_strerror(error));
}
return batch_cnt;
}
static struct tx_port *
tx_port_lookup(const struct hmap *hmap, odp_port_t port_no)
{
struct tx_port *tx;
HMAP_FOR_EACH_IN_BUCKET (tx, node, hash_port_no(port_no), hmap) {
if (tx->port->port_no == port_no) {
return tx;
}
}
return NULL;
}
static int
port_reconfigure(struct dp_netdev_port *port)
{
struct netdev *netdev = port->netdev;
int i, err;
port->need_reconfigure = false;
/* Closes the existing 'rxq's. */
for (i = 0; i < port->n_rxq; i++) {
netdev_rxq_close(port->rxqs[i].rx);
port->rxqs[i].rx = NULL;
}
unsigned last_nrxq = port->n_rxq;
port->n_rxq = 0;
/* Allows 'netdev' to apply the pending configuration changes. */
if (netdev_is_reconf_required(netdev)) {
err = netdev_reconfigure(netdev);
if (err && (err != EOPNOTSUPP)) {
VLOG_ERR("Failed to set interface %s new configuration",
netdev_get_name(netdev));
return err;
}
}
/* If the netdev_reconfigure() above succeeds, reopens the 'rxq's. */
port->rxqs = xrealloc(port->rxqs,
sizeof *port->rxqs * netdev_n_rxq(netdev));
/* Realloc 'used' counters for tx queues. */
free(port->txq_used);
port->txq_used = xcalloc(netdev_n_txq(netdev), sizeof *port->txq_used);
for (i = 0; i < netdev_n_rxq(netdev); i++) {
bool new_queue = i >= last_nrxq;
if (new_queue) {
memset(&port->rxqs[i], 0, sizeof port->rxqs[i]);
}
port->rxqs[i].port = port;
if (new_queue) {
dp_netdev_rxq_set_cycles(&port->rxqs[i], RXQ_CYCLES_PROC_CURR, 0);
dp_netdev_rxq_set_cycles(&port->rxqs[i], RXQ_CYCLES_PROC_HIST, 0);
for (unsigned j = 0; j < PMD_RXQ_INTERVAL_MAX; j++) {
dp_netdev_rxq_set_intrvl_cycles(&port->rxqs[i], 0);
}
}
err = netdev_rxq_open(netdev, &port->rxqs[i].rx, i);
if (err) {
return err;
}
port->n_rxq++;
}
/* Parse affinity list to apply configuration for new queues. */
dpif_netdev_port_set_rxq_affinity(port, port->rxq_affinity_list);
return 0;
}
struct rr_numa_list {
struct hmap numas; /* Contains 'struct rr_numa' */
};
struct rr_numa {
struct hmap_node node;
int numa_id;
/* Non isolated pmds on numa node 'numa_id' */
struct dp_netdev_pmd_thread **pmds;
int n_pmds;
int cur_index;
bool idx_inc;
};
static struct rr_numa *
rr_numa_list_lookup(struct rr_numa_list *rr, int numa_id)
{
struct rr_numa *numa;
HMAP_FOR_EACH_WITH_HASH (numa, node, hash_int(numa_id, 0), &rr->numas) {
if (numa->numa_id == numa_id) {
return numa;
}
}
return NULL;
}
/* Returns the next node in numa list following 'numa' in round-robin fashion.
* Returns first node if 'numa' is a null pointer or the last node in 'rr'.
* Returns NULL if 'rr' numa list is empty. */
static struct rr_numa *
rr_numa_list_next(struct rr_numa_list *rr, const struct rr_numa *numa)
{
struct hmap_node *node = NULL;
if (numa) {
node = hmap_next(&rr->numas, &numa->node);
}
if (!node) {
node = hmap_first(&rr->numas);
}
return (node) ? CONTAINER_OF(node, struct rr_numa, node) : NULL;
}
static void
rr_numa_list_populate(struct dp_netdev *dp, struct rr_numa_list *rr)
{
struct dp_netdev_pmd_thread *pmd;
struct rr_numa *numa;
hmap_init(&rr->numas);
CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
if (pmd->core_id == NON_PMD_CORE_ID || pmd->isolated) {
continue;
}
numa = rr_numa_list_lookup(rr, pmd->numa_id);
if (!numa) {
numa = xzalloc(sizeof *numa);
numa->numa_id = pmd->numa_id;
hmap_insert(&rr->numas, &numa->node, hash_int(pmd->numa_id, 0));
}
numa->n_pmds++;
numa->pmds = xrealloc(numa->pmds, numa->n_pmds * sizeof *numa->pmds);
numa->pmds[numa->n_pmds - 1] = pmd;
/* At least one pmd so initialise curr_idx and idx_inc. */
numa->cur_index = 0;
numa->idx_inc = true;
}
}
/* Returns the next pmd from the numa node in
* incrementing or decrementing order. */
static struct dp_netdev_pmd_thread *
rr_numa_get_pmd(struct rr_numa *numa)
{
int numa_idx = numa->cur_index;
if (numa->idx_inc == true) {
/* Incrementing through list of pmds. */
if (numa->cur_index == numa->n_pmds-1) {
/* Reached the last pmd. */
numa->idx_inc = false;
} else {
numa->cur_index++;
}
} else {
/* Decrementing through list of pmds. */
if (numa->cur_index == 0) {
/* Reached the first pmd. */
numa->idx_inc = true;
} else {
numa->cur_index--;
}
}
return numa->pmds[numa_idx];
}
static void
rr_numa_list_destroy(struct rr_numa_list *rr)
{
struct rr_numa *numa;
HMAP_FOR_EACH_POP (numa, node, &rr->numas) {
free(numa->pmds);
free(numa);
}
hmap_destroy(&rr->numas);
}
/* Sort Rx Queues by the processing cycles they are consuming. */
static int
rxq_cycle_sort(const void *a, const void *b)
{
struct dp_netdev_rxq *qa;
struct dp_netdev_rxq *qb;
uint64_t total_qa, total_qb;
unsigned i;
qa = *(struct dp_netdev_rxq **) a;
qb = *(struct dp_netdev_rxq **) b;
total_qa = total_qb = 0;
for (i = 0; i < PMD_RXQ_INTERVAL_MAX; i++) {
total_qa += dp_netdev_rxq_get_intrvl_cycles(qa, i);
total_qb += dp_netdev_rxq_get_intrvl_cycles(qb, i);
}
dp_netdev_rxq_set_cycles(qa, RXQ_CYCLES_PROC_HIST, total_qa);
dp_netdev_rxq_set_cycles(qb, RXQ_CYCLES_PROC_HIST, total_qb);
if (total_qa >= total_qb) {
return -1;
}
return 1;
}
/* Assign pmds to queues. If 'pinned' is true, assign pmds to pinned
* queues and marks the pmds as isolated. Otherwise, assign non isolated
* pmds to unpinned queues.
*
* If 'pinned' is false queues will be sorted by processing cycles they are
* consuming and then assigned to pmds in round robin order.
*
* The function doesn't touch the pmd threads, it just stores the assignment
* in the 'pmd' member of each rxq. */
static void
rxq_scheduling(struct dp_netdev *dp, bool pinned) OVS_REQUIRES(dp->port_mutex)
{
struct dp_netdev_port *port;
struct rr_numa_list rr;
struct rr_numa *non_local_numa = NULL;
struct dp_netdev_rxq ** rxqs = NULL;
int i, n_rxqs = 0;
struct rr_numa *numa = NULL;
int numa_id;
HMAP_FOR_EACH (port, node, &dp->ports) {
if (!netdev_is_pmd(port->netdev)) {
continue;
}
for (int qid = 0; qid < port->n_rxq; qid++) {
struct dp_netdev_rxq *q = &port->rxqs[qid];
if (pinned && q->core_id != OVS_CORE_UNSPEC) {
struct dp_netdev_pmd_thread *pmd;
pmd = dp_netdev_get_pmd(dp, q->core_id);
if (!pmd) {
VLOG_WARN("There is no PMD thread on core %d. Queue "
"%d on port \'%s\' will not be polled.",
q->core_id, qid, netdev_get_name(port->netdev));
} else {
q->pmd = pmd;
pmd->isolated = true;
dp_netdev_pmd_unref(pmd);
}
} else if (!pinned && q->core_id == OVS_CORE_UNSPEC) {
if (n_rxqs == 0) {
rxqs = xmalloc(sizeof *rxqs);
} else {
rxqs = xrealloc(rxqs, sizeof *rxqs * (n_rxqs + 1));
}
/* Store the queue. */
rxqs[n_rxqs++] = q;
}
}
}
if (n_rxqs > 1) {
/* Sort the queues in order of the processing cycles
* they consumed during their last pmd interval. */
qsort(rxqs, n_rxqs, sizeof *rxqs, rxq_cycle_sort);
}
rr_numa_list_populate(dp, &rr);
/* Assign the sorted queues to pmds in round robin. */
for (i = 0; i < n_rxqs; i++) {
numa_id = netdev_get_numa_id(rxqs[i]->port->netdev);
numa = rr_numa_list_lookup(&rr, numa_id);
if (!numa) {
/* There are no pmds on the queue's local NUMA node.
Round robin on the NUMA nodes that do have pmds. */
non_local_numa = rr_numa_list_next(&rr, non_local_numa);
if (!non_local_numa) {
VLOG_ERR("There is no available (non-isolated) pmd "
"thread for port \'%s\' queue %d. This queue "
"will not be polled. Is pmd-cpu-mask set to "
"zero? Or are all PMDs isolated to other "
"queues?", netdev_rxq_get_name(rxqs[i]->rx),
netdev_rxq_get_queue_id(rxqs[i]->rx));
continue;
}
rxqs[i]->pmd = rr_numa_get_pmd(non_local_numa);
VLOG_WARN("There's no available (non-isolated) pmd thread "
"on numa node %d. Queue %d on port \'%s\' will "
"be assigned to the pmd on core %d "
"(numa node %d). Expect reduced performance.",
numa_id, netdev_rxq_get_queue_id(rxqs[i]->rx),
netdev_rxq_get_name(rxqs[i]->rx),
rxqs[i]->pmd->core_id, rxqs[i]->pmd->numa_id);
} else {
rxqs[i]->pmd = rr_numa_get_pmd(numa);
VLOG_INFO("Core %d on numa node %d assigned port \'%s\' "
"rx queue %d (measured processing cycles %"PRIu64").",
rxqs[i]->pmd->core_id, numa_id,
netdev_rxq_get_name(rxqs[i]->rx),
netdev_rxq_get_queue_id(rxqs[i]->rx),
dp_netdev_rxq_get_cycles(rxqs[i], RXQ_CYCLES_PROC_HIST));
}
}
rr_numa_list_destroy(&rr);
free(rxqs);
}
static void
reload_affected_pmds(struct dp_netdev *dp)
{
struct dp_netdev_pmd_thread *pmd;
CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
if (pmd->need_reload) {
dp_netdev_reload_pmd__(pmd);
pmd->need_reload = false;
}
}
}
static void
reconfigure_pmd_threads(struct dp_netdev *dp)
OVS_REQUIRES(dp->port_mutex)
{
struct dp_netdev_pmd_thread *pmd;
struct ovs_numa_dump *pmd_cores;
struct ovs_numa_info_core *core;
struct hmapx to_delete = HMAPX_INITIALIZER(&to_delete);
struct hmapx_node *node;
bool changed = false;
bool need_to_adjust_static_tx_qids = false;
/* The pmd threads should be started only if there's a pmd port in the
* datapath. If the user didn't provide any "pmd-cpu-mask", we start
* NR_PMD_THREADS per numa node. */
if (!has_pmd_port(dp)) {
pmd_cores = ovs_numa_dump_n_cores_per_numa(0);
} else if (dp->pmd_cmask && dp->pmd_cmask[0]) {
pmd_cores = ovs_numa_dump_cores_with_cmask(dp->pmd_cmask);
} else {
pmd_cores = ovs_numa_dump_n_cores_per_numa(NR_PMD_THREADS);
}
/* We need to adjust 'static_tx_qid's only if we're reducing number of
* PMD threads. Otherwise, new threads will allocate all the freed ids. */
if (ovs_numa_dump_count(pmd_cores) < cmap_count(&dp->poll_threads) - 1) {
/* Adjustment is required to keep 'static_tx_qid's sequential and
* avoid possible issues, for example, imbalanced tx queue usage
* and unnecessary locking caused by remapping on netdev level. */
need_to_adjust_static_tx_qids = true;
}
/* Check for unwanted pmd threads */
CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
if (pmd->core_id == NON_PMD_CORE_ID) {
continue;
}
if (!ovs_numa_dump_contains_core(pmd_cores, pmd->numa_id,
pmd->core_id)) {
hmapx_add(&to_delete, pmd);
} else if (need_to_adjust_static_tx_qids) {
pmd->need_reload = true;
}
}
HMAPX_FOR_EACH (node, &to_delete) {
pmd = (struct dp_netdev_pmd_thread *) node->data;
VLOG_INFO("PMD thread on numa_id: %d, core id: %2d destroyed.",
pmd->numa_id, pmd->core_id);
dp_netdev_del_pmd(dp, pmd);
}
changed = !hmapx_is_empty(&to_delete);
hmapx_destroy(&to_delete);
if (need_to_adjust_static_tx_qids) {
/* 'static_tx_qid's are not sequential now.
* Reload remaining threads to fix this. */
reload_affected_pmds(dp);
}
/* Check for required new pmd threads */
FOR_EACH_CORE_ON_DUMP(core, pmd_cores) {
pmd = dp_netdev_get_pmd(dp, core->core_id);
if (!pmd) {
pmd = xzalloc(sizeof *pmd);
dp_netdev_configure_pmd(pmd, dp, core->core_id, core->numa_id);
pmd->thread = ovs_thread_create("pmd", pmd_thread_main, pmd);
VLOG_INFO("PMD thread on numa_id: %d, core id: %2d created.",
pmd->numa_id, pmd->core_id);
changed = true;
} else {
dp_netdev_pmd_unref(pmd);
}
}
if (changed) {
struct ovs_numa_info_numa *numa;
/* Log the number of pmd threads per numa node. */
FOR_EACH_NUMA_ON_DUMP (numa, pmd_cores) {
VLOG_INFO("There are %"PRIuSIZE" pmd threads on numa node %d",
numa->n_cores, numa->numa_id);
}
}
ovs_numa_dump_destroy(pmd_cores);
}
static void
pmd_remove_stale_ports(struct dp_netdev *dp,
struct dp_netdev_pmd_thread *pmd)
OVS_EXCLUDED(pmd->port_mutex)
OVS_REQUIRES(dp->port_mutex)
{
struct rxq_poll *poll, *poll_next;
struct tx_port *tx, *tx_next;
ovs_mutex_lock(&pmd->port_mutex);
HMAP_FOR_EACH_SAFE (poll, poll_next, node, &pmd->poll_list) {
struct dp_netdev_port *port = poll->rxq->port;
if (port->need_reconfigure
|| !hmap_contains(&dp->ports, &port->node)) {
dp_netdev_del_rxq_from_pmd(pmd, poll);
}
}
HMAP_FOR_EACH_SAFE (tx, tx_next, node, &pmd->tx_ports) {
struct dp_netdev_port *port = tx->port;
if (port->need_reconfigure
|| !hmap_contains(&dp->ports, &port->node)) {
dp_netdev_del_port_tx_from_pmd(pmd, tx);
}
}
ovs_mutex_unlock(&pmd->port_mutex);
}
/* Must be called each time a port is added/removed or the cmask changes.
* This creates and destroys pmd threads, reconfigures ports, opens their
* rxqs and assigns all rxqs/txqs to pmd threads. */
static void
reconfigure_datapath(struct dp_netdev *dp)
OVS_REQUIRES(dp->port_mutex)
{
struct dp_netdev_pmd_thread *pmd;
struct dp_netdev_port *port;
int wanted_txqs;
dp->last_reconfigure_seq = seq_read(dp->reconfigure_seq);
/* Step 1: Adjust the pmd threads based on the datapath ports, the cores
* on the system and the user configuration. */
reconfigure_pmd_threads(dp);
wanted_txqs = cmap_count(&dp->poll_threads);
/* The number of pmd threads might have changed, or a port can be new:
* adjust the txqs. */
HMAP_FOR_EACH (port, node, &dp->ports) {
netdev_set_tx_multiq(port->netdev, wanted_txqs);
}
/* Step 2: Remove from the pmd threads ports that have been removed or
* need reconfiguration. */
/* Check for all the ports that need reconfiguration. We cache this in
* 'port->need_reconfigure', because netdev_is_reconf_required() can
* change at any time. */
HMAP_FOR_EACH (port, node, &dp->ports) {
if (netdev_is_reconf_required(port->netdev)) {
port->need_reconfigure = true;
}
}
/* Remove from the pmd threads all the ports that have been deleted or
* need reconfiguration. */
CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
pmd_remove_stale_ports(dp, pmd);
}
/* Reload affected pmd threads. We must wait for the pmd threads before
* reconfiguring the ports, because a port cannot be reconfigured while
* it's being used. */
reload_affected_pmds(dp);
/* Step 3: Reconfigure ports. */
/* We only reconfigure the ports that we determined above, because they're
* not being used by any pmd thread at the moment. If a port fails to
* reconfigure we remove it from the datapath. */
struct dp_netdev_port *next_port;
HMAP_FOR_EACH_SAFE (port, next_port, node, &dp->ports) {
int err;
if (!port->need_reconfigure) {
continue;
}
err = port_reconfigure(port);
if (err) {
hmap_remove(&dp->ports, &port->node);
seq_change(dp->port_seq);
port_destroy(port);
} else {
port->dynamic_txqs = netdev_n_txq(port->netdev) < wanted_txqs;
}
}
/* Step 4: Compute new rxq scheduling. We don't touch the pmd threads
* for now, we just update the 'pmd' pointer in each rxq to point to the
* wanted thread according to the scheduling policy. */
/* Reset all the pmd threads to non isolated. */
CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
pmd->isolated = false;
}
/* Reset all the queues to unassigned */
HMAP_FOR_EACH (port, node, &dp->ports) {
for (int i = 0; i < port->n_rxq; i++) {
port->rxqs[i].pmd = NULL;
}
}
/* Add pinned queues and mark pmd threads isolated. */
rxq_scheduling(dp, true);
/* Add non-pinned queues. */
rxq_scheduling(dp, false);
/* Step 5: Remove queues not compliant with new scheduling. */
CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
struct rxq_poll *poll, *poll_next;
ovs_mutex_lock(&pmd->port_mutex);
HMAP_FOR_EACH_SAFE (poll, poll_next, node, &pmd->poll_list) {
if (poll->rxq->pmd != pmd) {
dp_netdev_del_rxq_from_pmd(pmd, poll);
}
}
ovs_mutex_unlock(&pmd->port_mutex);
}
/* Reload affected pmd threads. We must wait for the pmd threads to remove
* the old queues before readding them, otherwise a queue can be polled by
* two threads at the same time. */
reload_affected_pmds(dp);
/* Step 6: Add queues from scheduling, if they're not there already. */
HMAP_FOR_EACH (port, node, &dp->ports) {
if (!netdev_is_pmd(port->netdev)) {
continue;
}
for (int qid = 0; qid < port->n_rxq; qid++) {
struct dp_netdev_rxq *q = &port->rxqs[qid];
if (q->pmd) {
ovs_mutex_lock(&q->pmd->port_mutex);
dp_netdev_add_rxq_to_pmd(q->pmd, q);
ovs_mutex_unlock(&q->pmd->port_mutex);
}
}
}
/* Add every port to the tx cache of every pmd thread, if it's not
* there already and if this pmd has at least one rxq to poll. */
CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
ovs_mutex_lock(&pmd->port_mutex);
if (hmap_count(&pmd->poll_list) || pmd->core_id == NON_PMD_CORE_ID) {
HMAP_FOR_EACH (port, node, &dp->ports) {
dp_netdev_add_port_tx_to_pmd(pmd, port);
}
}
ovs_mutex_unlock(&pmd->port_mutex);
}
/* Reload affected pmd threads. */
reload_affected_pmds(dp);
}
/* Returns true if one of the netdevs in 'dp' requires a reconfiguration */
static bool
ports_require_restart(const struct dp_netdev *dp)
OVS_REQUIRES(dp->port_mutex)
{
struct dp_netdev_port *port;
HMAP_FOR_EACH (port, node, &dp->ports) {
if (netdev_is_reconf_required(port->netdev)) {
return true;
}
}
return false;
}
/* Return true if needs to revalidate datapath flows. */
static bool
dpif_netdev_run(struct dpif *dpif)
{
struct dp_netdev_port *port;
struct dp_netdev *dp = get_dp_netdev(dpif);
struct dp_netdev_pmd_thread *non_pmd;
uint64_t new_tnl_seq;
int process_packets = 0;
ovs_mutex_lock(&dp->port_mutex);
non_pmd = dp_netdev_get_pmd(dp, NON_PMD_CORE_ID);
if (non_pmd) {
ovs_mutex_lock(&dp->non_pmd_mutex);
cycles_count_start(non_pmd);
HMAP_FOR_EACH (port, node, &dp->ports) {
if (!netdev_is_pmd(port->netdev)) {
int i;
for (i = 0; i < port->n_rxq; i++) {
process_packets =
dp_netdev_process_rxq_port(non_pmd,
port->rxqs[i].rx,
port->port_no);
cycles_count_intermediate(non_pmd, NULL,
process_packets
? PMD_CYCLES_PROCESSING
: PMD_CYCLES_IDLE);
}
}
}
cycles_count_end(non_pmd, PMD_CYCLES_IDLE);
dpif_netdev_xps_revalidate_pmd(non_pmd, time_msec(), false);
ovs_mutex_unlock(&dp->non_pmd_mutex);
dp_netdev_pmd_unref(non_pmd);
}
if (dp_netdev_is_reconf_required(dp) || ports_require_restart(dp)) {
reconfigure_datapath(dp);
}
ovs_mutex_unlock(&dp->port_mutex);
tnl_neigh_cache_run();
tnl_port_map_run();
new_tnl_seq = seq_read(tnl_conf_seq);
if (dp->last_tnl_conf_seq != new_tnl_seq) {
dp->last_tnl_conf_seq = new_tnl_seq;
return true;
}
return false;
}
static void
dpif_netdev_wait(struct dpif *dpif)
{
struct dp_netdev_port *port;
struct dp_netdev *dp = get_dp_netdev(dpif);
ovs_mutex_lock(&dp_netdev_mutex);
ovs_mutex_lock(&dp->port_mutex);
HMAP_FOR_EACH (port, node, &dp->ports) {
netdev_wait_reconf_required(port->netdev);
if (!netdev_is_pmd(port->netdev)) {
int i;
for (i = 0; i < port->n_rxq; i++) {
netdev_rxq_wait(port->rxqs[i].rx);
}
}
}
ovs_mutex_unlock(&dp->port_mutex);
ovs_mutex_unlock(&dp_netdev_mutex);
seq_wait(tnl_conf_seq, dp->last_tnl_conf_seq);
}
static void
pmd_free_cached_ports(struct dp_netdev_pmd_thread *pmd)
{
struct tx_port *tx_port_cached;
/* Free all used tx queue ids. */
dpif_netdev_xps_revalidate_pmd(pmd, 0, true);
HMAP_FOR_EACH_POP (tx_port_cached, node, &pmd->tnl_port_cache) {
free(tx_port_cached);
}
HMAP_FOR_EACH_POP (tx_port_cached, node, &pmd->send_port_cache) {
free(tx_port_cached);
}
}
/* Copies ports from 'pmd->tx_ports' (shared with the main thread) to
* thread-local copies. Copy to 'pmd->tnl_port_cache' if it is a tunnel
* device, otherwise to 'pmd->send_port_cache' if the port has at least
* one txq. */
static void
pmd_load_cached_ports(struct dp_netdev_pmd_thread *pmd)
OVS_REQUIRES(pmd->port_mutex)
{
struct tx_port *tx_port, *tx_port_cached;
pmd_free_cached_ports(pmd);
hmap_shrink(&pmd->send_port_cache);
hmap_shrink(&pmd->tnl_port_cache);
HMAP_FOR_EACH (tx_port, node, &pmd->tx_ports) {
if (netdev_has_tunnel_push_pop(tx_port->port->netdev)) {
tx_port_cached = xmemdup(tx_port, sizeof *tx_port_cached);
hmap_insert(&pmd->tnl_port_cache, &tx_port_cached->node,
hash_port_no(tx_port_cached->port->port_no));
}
if (netdev_n_txq(tx_port->port->netdev)) {
tx_port_cached = xmemdup(tx_port, sizeof *tx_port_cached);
hmap_insert(&pmd->send_port_cache, &tx_port_cached->node,
hash_port_no(tx_port_cached->port->port_no));
}
}
}
static void
pmd_alloc_static_tx_qid(struct dp_netdev_pmd_thread *pmd)
{
ovs_mutex_lock(&pmd->dp->tx_qid_pool_mutex);
if (!id_pool_alloc_id(pmd->dp->tx_qid_pool, &pmd->static_tx_qid)) {
VLOG_ABORT("static_tx_qid allocation failed for PMD on core %2d"
", numa_id %d.", pmd->core_id, pmd->numa_id);
}
ovs_mutex_unlock(&pmd->dp->tx_qid_pool_mutex);
VLOG_DBG("static_tx_qid = %d allocated for PMD thread on core %2d"
", numa_id %d.", pmd->static_tx_qid, pmd->core_id, pmd->numa_id);
}
static void
pmd_free_static_tx_qid(struct dp_netdev_pmd_thread *pmd)
{
ovs_mutex_lock(&pmd->dp->tx_qid_pool_mutex);
id_pool_free_id(pmd->dp->tx_qid_pool, pmd->static_tx_qid);
ovs_mutex_unlock(&pmd->dp->tx_qid_pool_mutex);
}
static int
pmd_load_queues_and_ports(struct dp_netdev_pmd_thread *pmd,
struct polled_queue **ppoll_list)
{
struct polled_queue *poll_list = *ppoll_list;
struct rxq_poll *poll;
int i;
ovs_mutex_lock(&pmd->port_mutex);
poll_list = xrealloc(poll_list, hmap_count(&pmd->poll_list)
* sizeof *poll_list);
i = 0;
HMAP_FOR_EACH (poll, node, &pmd->poll_list) {
poll_list[i].rxq = poll->rxq;
poll_list[i].port_no = poll->rxq->port->port_no;
i++;
}
pmd_load_cached_ports(pmd);
ovs_mutex_unlock(&pmd->port_mutex);
*ppoll_list = poll_list;
return i;
}
static void *
pmd_thread_main(void *f_)
{
struct dp_netdev_pmd_thread *pmd = f_;
unsigned int lc = 0;
struct polled_queue *poll_list;
bool exiting;
int poll_cnt;
int i;
int process_packets = 0;
poll_list = NULL;
/* Stores the pmd thread's 'pmd' to 'per_pmd_key'. */
ovsthread_setspecific(pmd->dp->per_pmd_key, pmd);
ovs_numa_thread_setaffinity_core(pmd->core_id);
dpdk_set_lcore_id(pmd->core_id);
poll_cnt = pmd_load_queues_and_ports(pmd, &poll_list);
emc_cache_init(&pmd->flow_cache);
reload:
pmd_alloc_static_tx_qid(pmd);
/* List port/core affinity */
for (i = 0; i < poll_cnt; i++) {
VLOG_DBG("Core %d processing port \'%s\' with queue-id %d\n",
pmd->core_id, netdev_rxq_get_name(poll_list[i].rxq->rx),
netdev_rxq_get_queue_id(poll_list[i].rxq->rx));
}
if (!poll_cnt) {
while (seq_read(pmd->reload_seq) == pmd->last_reload_seq) {
seq_wait(pmd->reload_seq, pmd->last_reload_seq);
poll_block();
}
lc = UINT_MAX;
}
cycles_count_start(pmd);
for (;;) {
for (i = 0; i < poll_cnt; i++) {
process_packets =
dp_netdev_process_rxq_port(pmd, poll_list[i].rxq->rx,
poll_list[i].port_no);
cycles_count_intermediate(pmd, poll_list[i].rxq,
process_packets ? PMD_CYCLES_PROCESSING
: PMD_CYCLES_IDLE);
}
if (lc++ > 1024) {
bool reload;
lc = 0;
coverage_try_clear();
dp_netdev_pmd_try_optimize(pmd, poll_list, poll_cnt);
if (!ovsrcu_try_quiesce()) {
emc_cache_slow_sweep(&pmd->flow_cache);
}
atomic_read_relaxed(&pmd->reload, &reload);
if (reload) {
break;
}
}
}
cycles_count_end(pmd, PMD_CYCLES_IDLE);
poll_cnt = pmd_load_queues_and_ports(pmd, &poll_list);
exiting = latch_is_set(&pmd->exit_latch);
/* Signal here to make sure the pmd finishes
* reloading the updated configuration. */
dp_netdev_pmd_reload_done(pmd);
pmd_free_static_tx_qid(pmd);
if (!exiting) {
goto reload;
}
emc_cache_uninit(&pmd->flow_cache);
free(poll_list);
pmd_free_cached_ports(pmd);
return NULL;
}
static void
dp_netdev_disable_upcall(struct dp_netdev *dp)
OVS_ACQUIRES(dp->upcall_rwlock)
{
fat_rwlock_wrlock(&dp->upcall_rwlock);
}
/* Meters */
static void
dpif_netdev_meter_get_features(const struct dpif * dpif OVS_UNUSED,
struct ofputil_meter_features *features)
{
features->max_meters = MAX_METERS;
features->band_types = DP_SUPPORTED_METER_BAND_TYPES;
features->capabilities = DP_SUPPORTED_METER_FLAGS_MASK;
features->max_bands = MAX_BANDS;
features->max_color = 0;
}
/* Returns false when packet needs to be dropped. */
static void
dp_netdev_run_meter(struct dp_netdev *dp, struct dp_packet_batch *packets_,
uint32_t meter_id, long long int now)
{
struct dp_meter *meter;
struct dp_meter_band *band;
struct dp_packet *packet;
long long int long_delta_t; /* msec */
uint32_t delta_t; /* msec */
int i;
const size_t cnt = dp_packet_batch_size(packets_);
uint32_t bytes, volume;
int exceeded_band[NETDEV_MAX_BURST];
uint32_t exceeded_rate[NETDEV_MAX_BURST];
int exceeded_pkt = cnt; /* First packet that exceeded a band rate. */
if (meter_id >= MAX_METERS) {
return;
}
meter_lock(dp, meter_id);
meter = dp->meters[meter_id];
if (!meter) {
goto out;
}
/* Initialize as negative values. */
memset(exceeded_band, 0xff, cnt * sizeof *exceeded_band);
/* Initialize as zeroes. */
memset(exceeded_rate, 0, cnt * sizeof *exceeded_rate);
/* All packets will hit the meter at the same time. */
long_delta_t = (now - meter->used); /* msec */
/* Make sure delta_t will not be too large, so that bucket will not
* wrap around below. */
delta_t = (long_delta_t > (long long int)meter->max_delta_t)
? meter->max_delta_t : (uint32_t)long_delta_t;
/* Update meter stats. */
meter->used = now;
meter->packet_count += cnt;
bytes = 0;
DP_PACKET_BATCH_FOR_EACH (packet, packets_) {
bytes += dp_packet_size(packet);
}
meter->byte_count += bytes;
/* Meters can operate in terms of packets per second or kilobits per
* second. */
if (meter->flags & OFPMF13_PKTPS) {
/* Rate in packets/second, bucket 1/1000 packets. */
/* msec * packets/sec = 1/1000 packets. */
volume = cnt * 1000; /* Take 'cnt' packets from the bucket. */
} else {
/* Rate in kbps, bucket in bits. */
/* msec * kbps = bits */
volume = bytes * 8;
}
/* Update all bands and find the one hit with the highest rate for each
* packet (if any). */
for (int m = 0; m < meter->n_bands; ++m) {
band = &meter->bands[m];
/* Update band's bucket. */
band->bucket += delta_t * band->up.rate;
if (band->bucket > band->up.burst_size) {
band->bucket = band->up.burst_size;
}
/* Drain the bucket for all the packets, if possible. */
if (band->bucket >= volume) {
band->bucket -= volume;
} else {
int band_exceeded_pkt;
/* Band limit hit, must process packet-by-packet. */
if (meter->flags & OFPMF13_PKTPS) {
band_exceeded_pkt = band->bucket / 1000;
band->bucket %= 1000; /* Remainder stays in bucket. */
/* Update the exceeding band for each exceeding packet.
* (Only one band will be fired by a packet, and that
* can be different for each packet.) */
for (i = band_exceeded_pkt; i < cnt; i++) {
if (band->up.rate > exceeded_rate[i]) {
exceeded_rate[i] = band->up.rate;
exceeded_band[i] = m;
}
}
} else {
/* Packet sizes differ, must process one-by-one. */
band_exceeded_pkt = cnt;
DP_PACKET_BATCH_FOR_EACH (packet, packets_) {
uint32_t bits = dp_packet_size(packet) * 8;
if (band->bucket >= bits) {
band->bucket -= bits;
} else {
if (i < band_exceeded_pkt) {
band_exceeded_pkt = i;
}
/* Update the exceeding band for the exceeding packet.
* (Only one band will be fired by a packet, and that
* can be different for each packet.) */
if (band->up.rate > exceeded_rate[i]) {
exceeded_rate[i] = band->up.rate;
exceeded_band[i] = m;
}
}
}
}
/* Remember the first exceeding packet. */
if (exceeded_pkt > band_exceeded_pkt) {
exceeded_pkt = band_exceeded_pkt;
}
}
}
/* Fire the highest rate band exceeded by each packet.
* Drop packets if needed, by swapping packet to the end that will be
* ignored. */
size_t j;
DP_PACKET_BATCH_REFILL_FOR_EACH (j, cnt, packet, packets_) {
if (exceeded_band[j] >= 0) {
/* Meter drop packet. */
band = &meter->bands[exceeded_band[j]];
band->packet_count += 1;
band->byte_count += dp_packet_size(packet);
dp_packet_delete(packet);
} else {
/* Meter accepts packet. */
dp_packet_batch_refill(packets_, packet, j);
}
}
out:
meter_unlock(dp, meter_id);
}
/* Meter set/get/del processing is still single-threaded. */
static int
dpif_netdev_meter_set(struct dpif *dpif, ofproto_meter_id *meter_id,
struct ofputil_meter_config *config)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
uint32_t mid = meter_id->uint32;
struct dp_meter *meter;
int i;
if (mid >= MAX_METERS) {
return EFBIG; /* Meter_id out of range. */
}
if (config->flags & ~DP_SUPPORTED_METER_FLAGS_MASK ||
!(config->flags & (OFPMF13_KBPS | OFPMF13_PKTPS))) {
return EBADF; /* Unsupported flags set */
}
/* Validate bands */
if (config->n_bands == 0 || config->n_bands > MAX_BANDS) {
return EINVAL; /* Too many bands */
}
/* Validate rates */
for (i = 0; i < config->n_bands; i++) {
if (config->bands[i].rate == 0) {
return EDOM; /* rate must be non-zero */
}
}
for (i = 0; i < config->n_bands; ++i) {
switch (config->bands[i].type) {
case OFPMBT13_DROP:
break;
default:
return ENODEV; /* Unsupported band type */
}
}
/* Allocate meter */
meter = xzalloc(sizeof *meter
+ config->n_bands * sizeof(struct dp_meter_band));
if (meter) {
meter->flags = config->flags;
meter->n_bands = config->n_bands;
meter->max_delta_t = 0;
meter->used = time_msec();
/* set up bands */
for (i = 0; i < config->n_bands; ++i) {
uint32_t band_max_delta_t;
/* Set burst size to a workable value if none specified. */
if (config->bands[i].burst_size == 0) {
config->bands[i].burst_size = config->bands[i].rate;
}
meter->bands[i].up = config->bands[i];
/* Convert burst size to the bucket units: */
/* pkts => 1/1000 packets, kilobits => bits. */
meter->bands[i].up.burst_size *= 1000;
/* Initialize bucket to empty. */
meter->bands[i].bucket = 0;
/* Figure out max delta_t that is enough to fill any bucket. */
band_max_delta_t
= meter->bands[i].up.burst_size / meter->bands[i].up.rate;
if (band_max_delta_t > meter->max_delta_t) {
meter->max_delta_t = band_max_delta_t;
}
}
meter_lock(dp, mid);
dp_delete_meter(dp, mid); /* Free existing meter, if any */
dp->meters[mid] = meter;
meter_unlock(dp, mid);
return 0;
}
return ENOMEM;
}
static int
dpif_netdev_meter_get(const struct dpif *dpif,
ofproto_meter_id meter_id_,
struct ofputil_meter_stats *stats, uint16_t n_bands)
{
const struct dp_netdev *dp = get_dp_netdev(dpif);
const struct dp_meter *meter;
uint32_t meter_id = meter_id_.uint32;
if (meter_id >= MAX_METERS) {
return EFBIG;
}
meter = dp->meters[meter_id];
if (!meter) {
return ENOENT;
}
if (stats) {
int i = 0;
meter_lock(dp, meter_id);
stats->packet_in_count = meter->packet_count;
stats->byte_in_count = meter->byte_count;
for (i = 0; i < n_bands && i < meter->n_bands; ++i) {
stats->bands[i].packet_count = meter->bands[i].packet_count;
stats->bands[i].byte_count = meter->bands[i].byte_count;
}
meter_unlock(dp, meter_id);
stats->n_bands = i;
}
return 0;
}
static int
dpif_netdev_meter_del(struct dpif *dpif,
ofproto_meter_id meter_id_,
struct ofputil_meter_stats *stats, uint16_t n_bands)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
int error;
error = dpif_netdev_meter_get(dpif, meter_id_, stats, n_bands);
if (!error) {
uint32_t meter_id = meter_id_.uint32;
meter_lock(dp, meter_id);
dp_delete_meter(dp, meter_id);
meter_unlock(dp, meter_id);
}
return error;
}
static void
dpif_netdev_disable_upcall(struct dpif *dpif)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
struct dp_netdev *dp = get_dp_netdev(dpif);
dp_netdev_disable_upcall(dp);
}
static void
dp_netdev_enable_upcall(struct dp_netdev *dp)
OVS_RELEASES(dp->upcall_rwlock)
{
fat_rwlock_unlock(&dp->upcall_rwlock);
}
static void
dpif_netdev_enable_upcall(struct dpif *dpif)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
struct dp_netdev *dp = get_dp_netdev(dpif);
dp_netdev_enable_upcall(dp);
}
static void
dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd)
{
ovs_mutex_lock(&pmd->cond_mutex);
atomic_store_relaxed(&pmd->reload, false);
pmd->last_reload_seq = seq_read(pmd->reload_seq);
xpthread_cond_signal(&pmd->cond);
ovs_mutex_unlock(&pmd->cond_mutex);
}
/* Finds and refs the dp_netdev_pmd_thread on core 'core_id'. Returns
* the pointer if succeeds, otherwise, NULL (it can return NULL even if
* 'core_id' is NON_PMD_CORE_ID).
*
* Caller must unrefs the returned reference. */
static struct dp_netdev_pmd_thread *
dp_netdev_get_pmd(struct dp_netdev *dp, unsigned core_id)
{
struct dp_netdev_pmd_thread *pmd;
const struct cmap_node *pnode;
pnode = cmap_find(&dp->poll_threads, hash_int(core_id, 0));
if (!pnode) {
return NULL;
}
pmd = CONTAINER_OF(pnode, struct dp_netdev_pmd_thread, node);
return dp_netdev_pmd_try_ref(pmd) ? pmd : NULL;
}
/* Sets the 'struct dp_netdev_pmd_thread' for non-pmd threads. */
static void
dp_netdev_set_nonpmd(struct dp_netdev *dp)
OVS_REQUIRES(dp->port_mutex)
{
struct dp_netdev_pmd_thread *non_pmd;
non_pmd = xzalloc(sizeof *non_pmd);
dp_netdev_configure_pmd(non_pmd, dp, NON_PMD_CORE_ID, OVS_NUMA_UNSPEC);
}
/* Caller must have valid pointer to 'pmd'. */
static bool
dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd)
{
return ovs_refcount_try_ref_rcu(&pmd->ref_cnt);
}
static void
dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd)
{
if (pmd && ovs_refcount_unref(&pmd->ref_cnt) == 1) {
ovsrcu_postpone(dp_netdev_destroy_pmd, pmd);
}
}
/* Given cmap position 'pos', tries to ref the next node. If try_ref()
* fails, keeps checking for next node until reaching the end of cmap.
*
* Caller must unrefs the returned reference. */
static struct dp_netdev_pmd_thread *
dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos)
{
struct dp_netdev_pmd_thread *next;
do {
struct cmap_node *node;
node = cmap_next_position(&dp->poll_threads, pos);
next = node ? CONTAINER_OF(node, struct dp_netdev_pmd_thread, node)
: NULL;
} while (next && !dp_netdev_pmd_try_ref(next));
return next;
}
/* Configures the 'pmd' based on the input argument. */
static void
dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd, struct dp_netdev *dp,
unsigned core_id, int numa_id)
{
pmd->dp = dp;
pmd->core_id = core_id;
pmd->numa_id = numa_id;
pmd->need_reload = false;
ovs_refcount_init(&pmd->ref_cnt);
latch_init(&pmd->exit_latch);
pmd->reload_seq = seq_create();
pmd->last_reload_seq = seq_read(pmd->reload_seq);
atomic_init(&pmd->reload, false);
xpthread_cond_init(&pmd->cond, NULL);
ovs_mutex_init(&pmd->cond_mutex);
ovs_mutex_init(&pmd->flow_mutex);
ovs_mutex_init(&pmd->port_mutex);
cmap_init(&pmd->flow_table);
cmap_init(&pmd->classifiers);
pmd->next_optimization = time_msec() + DPCLS_OPTIMIZATION_INTERVAL;
pmd->rxq_interval = time_msec() + PMD_RXQ_INTERVAL_LEN;
hmap_init(&pmd->poll_list);
hmap_init(&pmd->tx_ports);
hmap_init(&pmd->tnl_port_cache);
hmap_init(&pmd->send_port_cache);
/* init the 'flow_cache' since there is no
* actual thread created for NON_PMD_CORE_ID. */
if (core_id == NON_PMD_CORE_ID) {
emc_cache_init(&pmd->flow_cache);
pmd_alloc_static_tx_qid(pmd);
}
cmap_insert(&dp->poll_threads, CONST_CAST(struct cmap_node *, &pmd->node),
hash_int(core_id, 0));
}
static void
dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd)
{
struct dpcls *cls;
dp_netdev_pmd_flow_flush(pmd);
hmap_destroy(&pmd->send_port_cache);
hmap_destroy(&pmd->tnl_port_cache);
hmap_destroy(&pmd->tx_ports);
hmap_destroy(&pmd->poll_list);
/* All flows (including their dpcls_rules) have been deleted already */
CMAP_FOR_EACH (cls, node, &pmd->classifiers) {
dpcls_destroy(cls);
ovsrcu_postpone(free, cls);
}
cmap_destroy(&pmd->classifiers);
cmap_destroy(&pmd->flow_table);
ovs_mutex_destroy(&pmd->flow_mutex);
latch_destroy(&pmd->exit_latch);
seq_destroy(pmd->reload_seq);
xpthread_cond_destroy(&pmd->cond);
ovs_mutex_destroy(&pmd->cond_mutex);
ovs_mutex_destroy(&pmd->port_mutex);
free(pmd);
}
/* Stops the pmd thread, removes it from the 'dp->poll_threads',
* and unrefs the struct. */
static void
dp_netdev_del_pmd(struct dp_netdev *dp, struct dp_netdev_pmd_thread *pmd)
{
/* NON_PMD_CORE_ID doesn't have a thread, so we don't have to synchronize,
* but extra cleanup is necessary */
if (pmd->core_id == NON_PMD_CORE_ID) {
ovs_mutex_lock(&dp->non_pmd_mutex);
emc_cache_uninit(&pmd->flow_cache);
pmd_free_cached_ports(pmd);
pmd_free_static_tx_qid(pmd);
ovs_mutex_unlock(&dp->non_pmd_mutex);
} else {
latch_set(&pmd->exit_latch);
dp_netdev_reload_pmd__(pmd);
xpthread_join(pmd->thread, NULL);
}
dp_netdev_pmd_clear_ports(pmd);
/* Purges the 'pmd''s flows after stopping the thread, but before
* destroying the flows, so that the flow stats can be collected. */
if (dp->dp_purge_cb) {
dp->dp_purge_cb(dp->dp_purge_aux, pmd->core_id);
}
cmap_remove(&pmd->dp->poll_threads, &pmd->node, hash_int(pmd->core_id, 0));
dp_netdev_pmd_unref(pmd);
}
/* Destroys all pmd threads. If 'non_pmd' is true it also destroys the non pmd
* thread. */
static void
dp_netdev_destroy_all_pmds(struct dp_netdev *dp, bool non_pmd)
{
struct dp_netdev_pmd_thread *pmd;
struct dp_netdev_pmd_thread **pmd_list;
size_t k = 0, n_pmds;
n_pmds = cmap_count(&dp->poll_threads);
pmd_list = xcalloc(n_pmds, sizeof *pmd_list);
CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
if (!non_pmd && pmd->core_id == NON_PMD_CORE_ID) {
continue;
}
/* We cannot call dp_netdev_del_pmd(), since it alters
* 'dp->poll_threads' (while we're iterating it) and it
* might quiesce. */
ovs_assert(k < n_pmds);
pmd_list[k++] = pmd;
}
for (size_t i = 0; i < k; i++) {
dp_netdev_del_pmd(dp, pmd_list[i]);
}
free(pmd_list);
}
/* Deletes all rx queues from pmd->poll_list and all the ports from
* pmd->tx_ports. */
static void
dp_netdev_pmd_clear_ports(struct dp_netdev_pmd_thread *pmd)
{
struct rxq_poll *poll;
struct tx_port *port;
ovs_mutex_lock(&pmd->port_mutex);
HMAP_FOR_EACH_POP (poll, node, &pmd->poll_list) {
free(poll);
}
HMAP_FOR_EACH_POP (port, node, &pmd->tx_ports) {
free(port);
}
ovs_mutex_unlock(&pmd->port_mutex);
}
/* Adds rx queue to poll_list of PMD thread, if it's not there already. */
static void
dp_netdev_add_rxq_to_pmd(struct dp_netdev_pmd_thread *pmd,
struct dp_netdev_rxq *rxq)
OVS_REQUIRES(pmd->port_mutex)
{
int qid = netdev_rxq_get_queue_id(rxq->rx);
uint32_t hash = hash_2words(odp_to_u32(rxq->port->port_no), qid);
struct rxq_poll *poll;
HMAP_FOR_EACH_WITH_HASH (poll, node, hash, &pmd->poll_list) {
if (poll->rxq == rxq) {
/* 'rxq' is already polled by this thread. Do nothing. */
return;
}
}
poll = xmalloc(sizeof *poll);
poll->rxq = rxq;
hmap_insert(&pmd->poll_list, &poll->node, hash);
pmd->need_reload = true;
}
/* Delete 'poll' from poll_list of PMD thread. */
static void
dp_netdev_del_rxq_from_pmd(struct dp_netdev_pmd_thread *pmd,
struct rxq_poll *poll)
OVS_REQUIRES(pmd->port_mutex)
{
hmap_remove(&pmd->poll_list, &poll->node);
free(poll);
pmd->need_reload = true;
}
/* Add 'port' to the tx port cache of 'pmd', which must be reloaded for the
* changes to take effect. */
static void
dp_netdev_add_port_tx_to_pmd(struct dp_netdev_pmd_thread *pmd,
struct dp_netdev_port *port)
OVS_REQUIRES(pmd->port_mutex)
{
struct tx_port *tx;
tx = tx_port_lookup(&pmd->tx_ports, port->port_no);
if (tx) {
/* 'port' is already on this thread tx cache. Do nothing. */
return;
}
tx = xzalloc(sizeof *tx);
tx->port = port;
tx->qid = -1;
hmap_insert(&pmd->tx_ports, &tx->node, hash_port_no(tx->port->port_no));
pmd->need_reload = true;
}
/* Del 'tx' from the tx port cache of 'pmd', which must be reloaded for the
* changes to take effect. */
static void
dp_netdev_del_port_tx_from_pmd(struct dp_netdev_pmd_thread *pmd,
struct tx_port *tx)
OVS_REQUIRES(pmd->port_mutex)
{
hmap_remove(&pmd->tx_ports, &tx->node);
free(tx);
pmd->need_reload = true;
}
static char *
dpif_netdev_get_datapath_version(void)
{
return xstrdup("<built-in>");
}
static void
dp_netdev_flow_used(struct dp_netdev_flow *netdev_flow, int cnt, int size,
uint16_t tcp_flags, long long now)
{
uint16_t flags;
atomic_store_relaxed(&netdev_flow->stats.used, now);
non_atomic_ullong_add(&netdev_flow->stats.packet_count, cnt);
non_atomic_ullong_add(&netdev_flow->stats.byte_count, size);
atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
flags |= tcp_flags;
atomic_store_relaxed(&netdev_flow->stats.tcp_flags, flags);
}
static void
dp_netdev_count_packet(struct dp_netdev_pmd_thread *pmd,
enum dp_stat_type type, int cnt)
{
non_atomic_ullong_add(&pmd->stats.n[type], cnt);
}
static int
dp_netdev_upcall(struct dp_netdev_pmd_thread *pmd, struct dp_packet *packet_,
struct flow *flow, struct flow_wildcards *wc, ovs_u128 *ufid,
enum dpif_upcall_type type, const struct nlattr *userdata,
struct ofpbuf *actions, struct ofpbuf *put_actions)
{
struct dp_netdev *dp = pmd->dp;
if (OVS_UNLIKELY(!dp->upcall_cb)) {
return ENODEV;
}
if (OVS_UNLIKELY(!VLOG_DROP_DBG(&upcall_rl))) {
struct ds ds = DS_EMPTY_INITIALIZER;
char *packet_str;
struct ofpbuf key;
struct odp_flow_key_parms odp_parms = {
.flow = flow,
.mask = wc ? &wc->masks : NULL,
.support = dp_netdev_support,
};
ofpbuf_init(&key, 0);
odp_flow_key_from_flow(&odp_parms, &key);
packet_str = ofp_dp_packet_to_string(packet_);
odp_flow_key_format(key.data, key.size, &ds);
VLOG_DBG("%s: %s upcall:\n%s\n%s", dp->name,
dpif_upcall_type_to_string(type), ds_cstr(&ds), packet_str);
ofpbuf_uninit(&key);
free(packet_str);
ds_destroy(&ds);
}
return dp->upcall_cb(packet_, flow, ufid, pmd->core_id, type, userdata,
actions, wc, put_actions, dp->upcall_aux);
}
static inline uint32_t
dpif_netdev_packet_get_rss_hash_orig_pkt(struct dp_packet *packet,
const struct miniflow *mf)
{
uint32_t hash;
if (OVS_LIKELY(dp_packet_rss_valid(packet))) {
hash = dp_packet_get_rss_hash(packet);
} else {
hash = miniflow_hash_5tuple(mf, 0);
dp_packet_set_rss_hash(packet, hash);
}
return hash;
}
static inline uint32_t
dpif_netdev_packet_get_rss_hash(struct dp_packet *packet,
const struct miniflow *mf)
{
uint32_t hash, recirc_depth;
if (OVS_LIKELY(dp_packet_rss_valid(packet))) {
hash = dp_packet_get_rss_hash(packet);
} else {
hash = miniflow_hash_5tuple(mf, 0);
dp_packet_set_rss_hash(packet, hash);
}
/* The RSS hash must account for the recirculation depth to avoid
* collisions in the exact match cache */
recirc_depth = *recirc_depth_get_unsafe();
if (OVS_UNLIKELY(recirc_depth)) {
hash = hash_finish(hash, recirc_depth);
dp_packet_set_rss_hash(packet, hash);
}
return hash;
}
struct packet_batch_per_flow {
unsigned int byte_count;
uint16_t tcp_flags;
struct dp_netdev_flow *flow;
struct dp_packet_batch array;
};
static inline void
packet_batch_per_flow_update(struct packet_batch_per_flow *batch,
struct dp_packet *packet,
const struct miniflow *mf)
{
batch->byte_count += dp_packet_size(packet);
batch->tcp_flags |= miniflow_get_tcp_flags(mf);
batch->array.packets[batch->array.count++] = packet;
}
static inline void
packet_batch_per_flow_init(struct packet_batch_per_flow *batch,
struct dp_netdev_flow *flow)
{
flow->batch = batch;
batch->flow = flow;
dp_packet_batch_init(&batch->array);
batch->byte_count = 0;
batch->tcp_flags = 0;
}
static inline void
packet_batch_per_flow_execute(struct packet_batch_per_flow *batch,
struct dp_netdev_pmd_thread *pmd,
long long now)
{
struct dp_netdev_actions *actions;
struct dp_netdev_flow *flow = batch->flow;
dp_netdev_flow_used(flow, batch->array.count, batch->byte_count,
batch->tcp_flags, now);
actions = dp_netdev_flow_get_actions(flow);
dp_netdev_execute_actions(pmd, &batch->array, true, &flow->flow,
actions->actions, actions->size, now);
}
static inline void
dp_netdev_queue_batches(struct dp_packet *pkt,
struct dp_netdev_flow *flow, const struct miniflow *mf,
struct packet_batch_per_flow *batches,
size_t *n_batches)
{
struct packet_batch_per_flow *batch = flow->batch;
if (OVS_UNLIKELY(!batch)) {
batch = &batches[(*n_batches)++];
packet_batch_per_flow_init(batch, flow);
}
packet_batch_per_flow_update(batch, pkt, mf);
}
/* Try to process all ('cnt') the 'packets' using only the exact match cache
* 'pmd->flow_cache'. If a flow is not found for a packet 'packets[i]', the
* miniflow is copied into 'keys' and the packet pointer is moved at the
* beginning of the 'packets' array.
*
* The function returns the number of packets that needs to be processed in the
* 'packets' array (they have been moved to the beginning of the vector).
*
* For performance reasons a caller may choose not to initialize the metadata
* in 'packets_'. If 'md_is_valid' is false, the metadata in 'packets'
* is not valid and must be initialized by this function using 'port_no'.
* If 'md_is_valid' is true, the metadata is already valid and 'port_no'
* will be ignored.
*/
static inline size_t
emc_processing(struct dp_netdev_pmd_thread *pmd,
struct dp_packet_batch *packets_,
struct netdev_flow_key *keys,
struct packet_batch_per_flow batches[], size_t *n_batches,
bool md_is_valid, odp_port_t port_no)
{
struct emc_cache *flow_cache = &pmd->flow_cache;
struct netdev_flow_key *key = &keys[0];
size_t n_missed = 0, n_dropped = 0;
struct dp_packet *packet;
const size_t cnt = dp_packet_batch_size(packets_);
uint32_t cur_min;
int i;
atomic_read_relaxed(&pmd->dp->emc_insert_min, &cur_min);
DP_PACKET_BATCH_REFILL_FOR_EACH (i, cnt, packet, packets_) {
struct dp_netdev_flow *flow;
if (OVS_UNLIKELY(dp_packet_size(packet) < ETH_HEADER_LEN)) {
dp_packet_delete(packet);
n_dropped++;
continue;
}
if (i != cnt - 1) {
struct dp_packet **packets = packets_->packets;
/* Prefetch next packet data and metadata. */
OVS_PREFETCH(dp_packet_data(packets[i+1]));
pkt_metadata_prefetch_init(&packets[i+1]->md);
}
if (!md_is_valid) {
pkt_metadata_init(&packet->md, port_no);
}
miniflow_extract(packet, &key->mf);
key->len = 0; /* Not computed yet. */
/* If EMC is disabled skip hash computation and emc_lookup */
if (cur_min) {
if (!md_is_valid) {
key->hash = dpif_netdev_packet_get_rss_hash_orig_pkt(packet,
&key->mf);
} else {
key->hash = dpif_netdev_packet_get_rss_hash(packet, &key->mf);
}
flow = emc_lookup(flow_cache, key);
} else {
flow = NULL;
}
if (OVS_LIKELY(flow)) {
dp_netdev_queue_batches(packet, flow, &key->mf, batches,
n_batches);
} else {
/* Exact match cache missed. Group missed packets together at
* the beginning of the 'packets' array. */
dp_packet_batch_refill(packets_, packet, i);
/* 'key[n_missed]' contains the key of the current packet and it
* must be returned to the caller. The next key should be extracted
* to 'keys[n_missed + 1]'. */
key = &keys[++n_missed];
}
}
dp_netdev_count_packet(pmd, DP_STAT_EXACT_HIT,
cnt - n_dropped - n_missed);
return dp_packet_batch_size(packets_);
}
static inline void
handle_packet_upcall(struct dp_netdev_pmd_thread *pmd,
struct dp_packet *packet,
const struct netdev_flow_key *key,
struct ofpbuf *actions, struct ofpbuf *put_actions,
int *lost_cnt, long long now)
{
struct ofpbuf *add_actions;
struct dp_packet_batch b;
struct match match;
ovs_u128 ufid;
int error;
match.tun_md.valid = false;
miniflow_expand(&key->mf, &match.flow);
ofpbuf_clear(actions);
ofpbuf_clear(put_actions);
dpif_flow_hash(pmd->dp->dpif, &match.flow, sizeof match.flow, &ufid);
error = dp_netdev_upcall(pmd, packet, &match.flow, &match.wc,
&ufid, DPIF_UC_MISS, NULL, actions,
put_actions);
if (OVS_UNLIKELY(error && error != ENOSPC)) {
dp_packet_delete(packet);
(*lost_cnt)++;
return;
}
/* The Netlink encoding of datapath flow keys cannot express
* wildcarding the presence of a VLAN tag. Instead, a missing VLAN
* tag is interpreted as exact match on the fact that there is no
* VLAN. Unless we refactor a lot of code that translates between
* Netlink and struct flow representations, we have to do the same
* here. */
if (!match.wc.masks.vlans[0].tci) {
match.wc.masks.vlans[0].tci = htons(0xffff);
}
/* We can't allow the packet batching in the next loop to execute
* the actions. Otherwise, if there are any slow path actions,
* we'll send the packet up twice. */
dp_packet_batch_init_packet(&b, packet);
dp_netdev_execute_actions(pmd, &b, true, &match.flow,
actions->data, actions->size, now);
add_actions = put_actions->size ? put_actions : actions;
if (OVS_LIKELY(error != ENOSPC)) {
struct dp_netdev_flow *netdev_flow;
/* XXX: There's a race window where a flow covering this packet
* could have already been installed since we last did the flow
* lookup before upcall. This could be solved by moving the
* mutex lock outside the loop, but that's an awful long time
* to be locking everyone out of making flow installs. If we
* move to a per-core classifier, it would be reasonable. */
ovs_mutex_lock(&pmd->flow_mutex);
netdev_flow = dp_netdev_pmd_lookup_flow(pmd, key, NULL);
if (OVS_LIKELY(!netdev_flow)) {
netdev_flow = dp_netdev_flow_add(pmd, &match, &ufid,
add_actions->data,
add_actions->size);
}
ovs_mutex_unlock(&pmd->flow_mutex);
emc_probabilistic_insert(pmd, key, netdev_flow);
}
}
static inline void
fast_path_processing(struct dp_netdev_pmd_thread *pmd,
struct dp_packet_batch *packets_,
struct netdev_flow_key *keys,
struct packet_batch_per_flow batches[], size_t *n_batches,
odp_port_t in_port,
long long now)
{
const size_t cnt = dp_packet_batch_size(packets_);
#if !defined(__CHECKER__) && !defined(_WIN32)
const size_t PKT_ARRAY_SIZE = cnt;
#else
/* Sparse or MSVC doesn't like variable length array. */
enum { PKT_ARRAY_SIZE = NETDEV_MAX_BURST };
#endif
struct dp_packet *packet;
struct dpcls *cls;
struct dpcls_rule *rules[PKT_ARRAY_SIZE];
struct dp_netdev *dp = pmd->dp;
int miss_cnt = 0, lost_cnt = 0;
int lookup_cnt = 0, add_lookup_cnt;
bool any_miss;
size_t i;
for (i = 0; i < cnt; i++) {
/* Key length is needed in all the cases, hash computed on demand. */
keys[i].len = netdev_flow_key_size(miniflow_n_values(&keys[i].mf));
}
/* Get the classifier for the in_port */
cls = dp_netdev_pmd_lookup_dpcls(pmd, in_port);
if (OVS_LIKELY(cls)) {
any_miss = !dpcls_lookup(cls, keys, rules, cnt, &lookup_cnt);
} else {
any_miss = true;
memset(rules, 0, sizeof(rules));
}
if (OVS_UNLIKELY(any_miss) && !fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
uint64_t actions_stub[512 / 8], slow_stub[512 / 8];
struct ofpbuf actions, put_actions;
ofpbuf_use_stub(&actions, actions_stub, sizeof actions_stub);
ofpbuf_use_stub(&put_actions, slow_stub, sizeof slow_stub);
DP_PACKET_BATCH_FOR_EACH (packet, packets_) {
struct dp_netdev_flow *netdev_flow;
if (OVS_LIKELY(rules[i])) {
continue;
}
/* It's possible that an earlier slow path execution installed
* a rule covering this flow. In this case, it's a lot cheaper
* to catch it here than execute a miss. */
netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &keys[i],
&add_lookup_cnt);
if (netdev_flow) {
lookup_cnt += add_lookup_cnt;
rules[i] = &netdev_flow->cr;
continue;
}
miss_cnt++;
handle_packet_upcall(pmd, packet, &keys[i], &actions,
&put_actions, &lost_cnt, now);
}
ofpbuf_uninit(&actions);
ofpbuf_uninit(&put_actions);
fat_rwlock_unlock(&dp->upcall_rwlock);
} else if (OVS_UNLIKELY(any_miss)) {
DP_PACKET_BATCH_FOR_EACH (packet, packets_) {
if (OVS_UNLIKELY(!rules[i])) {
dp_packet_delete(packet);
lost_cnt++;
miss_cnt++;
}
}
}
DP_PACKET_BATCH_FOR_EACH (packet, packets_) {
struct dp_netdev_flow *flow;
if (OVS_UNLIKELY(!rules[i])) {
continue;
}
flow = dp_netdev_flow_cast(rules[i]);
emc_probabilistic_insert(pmd, &keys[i], flow);
dp_netdev_queue_batches(packet, flow, &keys[i].mf, batches, n_batches);
}
dp_netdev_count_packet(pmd, DP_STAT_MASKED_HIT, cnt - miss_cnt);
dp_netdev_count_packet(pmd, DP_STAT_LOOKUP_HIT, lookup_cnt);
dp_netdev_count_packet(pmd, DP_STAT_MISS, miss_cnt);
dp_netdev_count_packet(pmd, DP_STAT_LOST, lost_cnt);
}
/* Packets enter the datapath from a port (or from recirculation) here.
*
* When 'md_is_valid' is true the metadata in 'packets' are already valid.
* When false the metadata in 'packets' need to be initialized. */
static void
dp_netdev_input__(struct dp_netdev_pmd_thread *pmd,
struct dp_packet_batch *packets,
bool md_is_valid, odp_port_t port_no)
{
#if !defined(__CHECKER__) && !defined(_WIN32)
const size_t PKT_ARRAY_SIZE = dp_packet_batch_size(packets);
#else
/* Sparse or MSVC doesn't like variable length array. */
enum { PKT_ARRAY_SIZE = NETDEV_MAX_BURST };
#endif
OVS_ALIGNED_VAR(CACHE_LINE_SIZE)
struct netdev_flow_key keys[PKT_ARRAY_SIZE];
struct packet_batch_per_flow batches[PKT_ARRAY_SIZE];
long long now = time_msec();
size_t n_batches;
odp_port_t in_port;
n_batches = 0;
emc_processing(pmd, packets, keys, batches, &n_batches,
md_is_valid, port_no);
if (!dp_packet_batch_is_empty(packets)) {
/* Get ingress port from first packet's metadata. */
in_port = packets->packets[0]->md.in_port.odp_port;
fast_path_processing(pmd, packets, keys, batches, &n_batches,
in_port, now);
}
/* All the flow batches need to be reset before any call to
* packet_batch_per_flow_execute() as it could potentially trigger
* recirculation. When a packet matching flow j happens to be
* recirculated, the nested call to dp_netdev_input__() could potentially
* classify the packet as matching another flow - say 'k'. It could happen
* that in the previous call to dp_netdev_input__() that same flow 'k' had
* already its own batches[k] still waiting to be served. So if its
* batch member is not reset, the recirculated packet would be wrongly
* appended to batches[k] of the 1st call to dp_netdev_input__(). */
size_t i;
for (i = 0; i < n_batches; i++) {
batches[i].flow->batch = NULL;
}
for (i = 0; i < n_batches; i++) {
packet_batch_per_flow_execute(&batches[i], pmd, now);
}
}
static void
dp_netdev_input(struct dp_netdev_pmd_thread *pmd,
struct dp_packet_batch *packets,
odp_port_t port_no)
{
dp_netdev_input__(pmd, packets, false, port_no);
}
static void
dp_netdev_recirculate(struct dp_netdev_pmd_thread *pmd,
struct dp_packet_batch *packets)
{
dp_netdev_input__(pmd, packets, true, 0);
}
struct dp_netdev_execute_aux {
struct dp_netdev_pmd_thread *pmd;
long long now;
const struct flow *flow;
};
static void
dpif_netdev_register_dp_purge_cb(struct dpif *dpif, dp_purge_callback *cb,
void *aux)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
dp->dp_purge_aux = aux;
dp->dp_purge_cb = cb;
}
static void
dpif_netdev_register_upcall_cb(struct dpif *dpif, upcall_callback *cb,
void *aux)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
dp->upcall_aux = aux;
dp->upcall_cb = cb;
}
static void
dpif_netdev_xps_revalidate_pmd(const struct dp_netdev_pmd_thread *pmd,
long long now, bool purge)
{
struct tx_port *tx;
struct dp_netdev_port *port;
long long interval;
HMAP_FOR_EACH (tx, node, &pmd->send_port_cache) {
if (!tx->port->dynamic_txqs) {
continue;
}
interval = now - tx->last_used;
if (tx->qid >= 0 && (purge || interval >= XPS_TIMEOUT_MS)) {
port = tx->port;
ovs_mutex_lock(&port->txq_used_mutex);
port->txq_used[tx->qid]--;
ovs_mutex_unlock(&port->txq_used_mutex);
tx->qid = -1;
}
}
}
static int
dpif_netdev_xps_get_tx_qid(const struct dp_netdev_pmd_thread *pmd,
struct tx_port *tx, long long now)
{
struct dp_netdev_port *port;
long long interval;
int i, min_cnt, min_qid;
if (OVS_UNLIKELY(!now)) {
now = time_msec();
}
interval = now - tx->last_used;
tx->last_used = now;
if (OVS_LIKELY(tx->qid >= 0 && interval < XPS_TIMEOUT_MS)) {
return tx->qid;
}
port = tx->port;
ovs_mutex_lock(&port->txq_used_mutex);
if (tx->qid >= 0) {
port->txq_used[tx->qid]--;
tx->qid = -1;
}
min_cnt = -1;
min_qid = 0;
for (i = 0; i < netdev_n_txq(port->netdev); i++) {
if (port->txq_used[i] < min_cnt || min_cnt == -1) {
min_cnt = port->txq_used[i];
min_qid = i;
}
}
port->txq_used[min_qid]++;
tx->qid = min_qid;
ovs_mutex_unlock(&port->txq_used_mutex);
dpif_netdev_xps_revalidate_pmd(pmd, now, false);
VLOG_DBG("Core %d: New TX queue ID %d for port \'%s\'.",
pmd->core_id, tx->qid, netdev_get_name(tx->port->netdev));
return min_qid;
}
static struct tx_port *
pmd_tnl_port_cache_lookup(const struct dp_netdev_pmd_thread *pmd,
odp_port_t port_no)
{
return tx_port_lookup(&pmd->tnl_port_cache, port_no);
}
static struct tx_port *
pmd_send_port_cache_lookup(const struct dp_netdev_pmd_thread *pmd,
odp_port_t port_no)
{
return tx_port_lookup(&pmd->send_port_cache, port_no);
}
static int
push_tnl_action(const struct dp_netdev_pmd_thread *pmd,
const struct nlattr *attr,
struct dp_packet_batch *batch)
{
struct tx_port *tun_port;
const struct ovs_action_push_tnl *data;
int err;
data = nl_attr_get(attr);
tun_port = pmd_tnl_port_cache_lookup(pmd, data->tnl_port);
if (!tun_port) {
err = -EINVAL;
goto error;
}
err = netdev_push_header(tun_port->port->netdev, batch, data);
if (!err) {
return 0;
}
error:
dp_packet_delete_batch(batch, true);
return err;
}
static void
dp_execute_userspace_action(struct dp_netdev_pmd_thread *pmd,
struct dp_packet *packet, bool may_steal,
struct flow *flow, ovs_u128 *ufid,
struct ofpbuf *actions,
const struct nlattr *userdata, long long now)
{
struct dp_packet_batch b;
int error;
ofpbuf_clear(actions);
error = dp_netdev_upcall(pmd, packet, flow, NULL, ufid,
DPIF_UC_ACTION, userdata, actions,
NULL);
if (!error || error == ENOSPC) {
dp_packet_batch_init_packet(&b, packet);
dp_netdev_execute_actions(pmd, &b, may_steal, flow,
actions->data, actions->size, now);
} else if (may_steal) {
dp_packet_delete(packet);
}
}
static void
dp_execute_cb(void *aux_, struct dp_packet_batch *packets_,
const struct nlattr *a, bool may_steal)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
struct dp_netdev_execute_aux *aux = aux_;
uint32_t *depth = recirc_depth_get();
struct dp_netdev_pmd_thread *pmd = aux->pmd;
struct dp_netdev *dp = pmd->dp;
int type = nl_attr_type(a);
long long now = aux->now;
struct tx_port *p;
switch ((enum ovs_action_attr)type) {
case OVS_ACTION_ATTR_OUTPUT:
p = pmd_send_port_cache_lookup(pmd, nl_attr_get_odp_port(a));
if (OVS_LIKELY(p)) {
int tx_qid;
bool dynamic_txqs;
dynamic_txqs = p->port->dynamic_txqs;
if (dynamic_txqs) {
tx_qid = dpif_netdev_xps_get_tx_qid(pmd, p, now);
} else {
tx_qid = pmd->static_tx_qid;
}
netdev_send(p->port->netdev, tx_qid, packets_, may_steal,
dynamic_txqs);
return;
}
break;
case OVS_ACTION_ATTR_TUNNEL_PUSH:
if (*depth < MAX_RECIRC_DEPTH) {
dp_packet_batch_apply_cutlen(packets_);
push_tnl_action(pmd, a, packets_);
return;
}
break;
case OVS_ACTION_ATTR_TUNNEL_POP:
if (*depth < MAX_RECIRC_DEPTH) {
struct dp_packet_batch *orig_packets_ = packets_;
odp_port_t portno = nl_attr_get_odp_port(a);
p = pmd_tnl_port_cache_lookup(pmd, portno);
if (p) {
struct dp_packet_batch tnl_pkt;
if (!may_steal) {
dp_packet_batch_clone(&tnl_pkt, packets_);
packets_ = &tnl_pkt;
dp_packet_batch_reset_cutlen(orig_packets_);
}
dp_packet_batch_apply_cutlen(packets_);
netdev_pop_header(p->port->netdev, packets_);
if (dp_packet_batch_is_empty(packets_)) {
return;
}
struct dp_packet *packet;
DP_PACKET_BATCH_FOR_EACH (packet, packets_) {
packet->md.in_port.odp_port = portno;
}
(*depth)++;
dp_netdev_recirculate(pmd, packets_);
(*depth)--;
return;
}
}
break;
case OVS_ACTION_ATTR_USERSPACE:
if (!fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
struct dp_packet_batch *orig_packets_ = packets_;
const struct nlattr *userdata;
struct dp_packet_batch usr_pkt;
struct ofpbuf actions;
struct flow flow;
ovs_u128 ufid;
bool clone = false;
userdata = nl_attr_find_nested(a, OVS_USERSPACE_ATTR_USERDATA);
ofpbuf_init(&actions, 0);
if (packets_->trunc) {
if (!may_steal) {
dp_packet_batch_clone(&usr_pkt, packets_);
packets_ = &usr_pkt;
clone = true;
dp_packet_batch_reset_cutlen(orig_packets_);
}
dp_packet_batch_apply_cutlen(packets_);
}
struct dp_packet *packet;
DP_PACKET_BATCH_FOR_EACH (packet, packets_) {
flow_extract(packet, &flow);
dpif_flow_hash(dp->dpif, &flow, sizeof flow, &ufid);
dp_execute_userspace_action(pmd, packet, may_steal, &flow,
&ufid, &actions, userdata, now);
}
if (clone) {
dp_packet_delete_batch(packets_, true);
}
ofpbuf_uninit(&actions);
fat_rwlock_unlock(&dp->upcall_rwlock);
return;
}
break;
case OVS_ACTION_ATTR_RECIRC:
if (*depth < MAX_RECIRC_DEPTH) {
struct dp_packet_batch recirc_pkts;
if (!may_steal) {
dp_packet_batch_clone(&recirc_pkts, packets_);
packets_ = &recirc_pkts;
}
struct dp_packet *packet;
DP_PACKET_BATCH_FOR_EACH (packet, packets_) {
packet->md.recirc_id = nl_attr_get_u32(a);
}
(*depth)++;
dp_netdev_recirculate(pmd, packets_);
(*depth)--;
return;
}
VLOG_WARN("Packet dropped. Max recirculation depth exceeded.");
break;
case OVS_ACTION_ATTR_CT: {
const struct nlattr *b;
bool force = false;
bool commit = false;
unsigned int left;
uint16_t zone = 0;
const char *helper = NULL;
const uint32_t *setmark = NULL;
const struct ovs_key_ct_labels *setlabel = NULL;
struct nat_action_info_t nat_action_info;
struct nat_action_info_t *nat_action_info_ref = NULL;
bool nat_config = false;
NL_ATTR_FOR_EACH_UNSAFE (b, left, nl_attr_get(a),
nl_attr_get_size(a)) {
enum ovs_ct_attr sub_type = nl_attr_type(b);
switch(sub_type) {
case OVS_CT_ATTR_FORCE_COMMIT:
force = true;
/* fall through. */
case OVS_CT_ATTR_COMMIT:
commit = true;
break;
case OVS_CT_ATTR_ZONE:
zone = nl_attr_get_u16(b);
break;
case OVS_CT_ATTR_HELPER:
helper = nl_attr_get_string(b);
break;
case OVS_CT_ATTR_MARK:
setmark = nl_attr_get(b);
break;
case OVS_CT_ATTR_LABELS:
setlabel = nl_attr_get(b);
break;
case OVS_CT_ATTR_EVENTMASK:
/* Silently ignored, as userspace datapath does not generate
* netlink events. */
break;
case OVS_CT_ATTR_NAT: {
const struct nlattr *b_nest;
unsigned int left_nest;
bool ip_min_specified = false;
bool proto_num_min_specified = false;
bool ip_max_specified = false;
bool proto_num_max_specified = false;
memset(&nat_action_info, 0, sizeof nat_action_info);
nat_action_info_ref = &nat_action_info;
NL_NESTED_FOR_EACH_UNSAFE (b_nest, left_nest, b) {
enum ovs_nat_attr sub_type_nest = nl_attr_type(b_nest);
switch (sub_type_nest) {
case OVS_NAT_ATTR_SRC:
case OVS_NAT_ATTR_DST:
nat_config = true;
nat_action_info.nat_action |=
((sub_type_nest == OVS_NAT_ATTR_SRC)
? NAT_ACTION_SRC : NAT_ACTION_DST);
break;
case OVS_NAT_ATTR_IP_MIN:
memcpy(&nat_action_info.min_addr,
nl_attr_get(b_nest),
nl_attr_get_size(b_nest));
ip_min_specified = true;
break;
case OVS_NAT_ATTR_IP_MAX:
memcpy(&nat_action_info.max_addr,
nl_attr_get(b_nest),
nl_attr_get_size(b_nest));
ip_max_specified = true;
break;
case OVS_NAT_ATTR_PROTO_MIN:
nat_action_info.min_port =
nl_attr_get_u16(b_nest);
proto_num_min_specified = true;
break;
case OVS_NAT_ATTR_PROTO_MAX:
nat_action_info.max_port =
nl_attr_get_u16(b_nest);
proto_num_max_specified = true;
break;
case OVS_NAT_ATTR_PERSISTENT:
case OVS_NAT_ATTR_PROTO_HASH:
case OVS_NAT_ATTR_PROTO_RANDOM:
break;
case OVS_NAT_ATTR_UNSPEC:
case __OVS_NAT_ATTR_MAX:
OVS_NOT_REACHED();
}
}
if (ip_min_specified && !ip_max_specified) {
nat_action_info.max_addr = nat_action_info.min_addr;
}
if (proto_num_min_specified && !proto_num_max_specified) {
nat_action_info.max_port = nat_action_info.min_port;
}
if (proto_num_min_specified || proto_num_max_specified) {
if (nat_action_info.nat_action & NAT_ACTION_SRC) {
nat_action_info.nat_action |= NAT_ACTION_SRC_PORT;
} else if (nat_action_info.nat_action & NAT_ACTION_DST) {
nat_action_info.nat_action |= NAT_ACTION_DST_PORT;
}
}
break;
}
case OVS_CT_ATTR_UNSPEC:
case __OVS_CT_ATTR_MAX:
OVS_NOT_REACHED();
}
}
/* We won't be able to function properly in this case, hence
* complain loudly. */
if (nat_config && !commit) {
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 5);
VLOG_WARN_RL(&rl, "NAT specified without commit.");
}
conntrack_execute(&dp->conntrack, packets_, aux->flow->dl_type, force,
commit, zone, setmark, setlabel, helper,
nat_action_info_ref, now);
break;
}
case OVS_ACTION_ATTR_METER:
dp_netdev_run_meter(pmd->dp, packets_, nl_attr_get_u32(a),
time_msec());
break;
case OVS_ACTION_ATTR_PUSH_VLAN:
case OVS_ACTION_ATTR_POP_VLAN:
case OVS_ACTION_ATTR_PUSH_MPLS:
case OVS_ACTION_ATTR_POP_MPLS:
case OVS_ACTION_ATTR_SET:
case OVS_ACTION_ATTR_SET_MASKED:
case OVS_ACTION_ATTR_SAMPLE:
case OVS_ACTION_ATTR_HASH:
case OVS_ACTION_ATTR_UNSPEC:
case OVS_ACTION_ATTR_TRUNC:
case OVS_ACTION_ATTR_PUSH_ETH:
case OVS_ACTION_ATTR_POP_ETH:
case OVS_ACTION_ATTR_CLONE:
case OVS_ACTION_ATTR_ENCAP_NSH:
case OVS_ACTION_ATTR_DECAP_NSH:
case __OVS_ACTION_ATTR_MAX:
OVS_NOT_REACHED();
}
dp_packet_delete_batch(packets_, may_steal);
}
static void
dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
struct dp_packet_batch *packets,
bool may_steal, const struct flow *flow,
const struct nlattr *actions, size_t actions_len,
long long now)
{
struct dp_netdev_execute_aux aux = { pmd, now, flow };
odp_execute_actions(&aux, packets, may_steal, actions,
actions_len, dp_execute_cb);
}
struct dp_netdev_ct_dump {
struct ct_dpif_dump_state up;
struct conntrack_dump dump;
struct conntrack *ct;
struct dp_netdev *dp;
};
static int
dpif_netdev_ct_dump_start(struct dpif *dpif, struct ct_dpif_dump_state **dump_,
const uint16_t *pzone, int *ptot_bkts)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
struct dp_netdev_ct_dump *dump;
dump = xzalloc(sizeof *dump);
dump->dp = dp;
dump->ct = &dp->conntrack;
conntrack_dump_start(&dp->conntrack, &dump->dump, pzone, ptot_bkts);
*dump_ = &dump->up;
return 0;
}
static int
dpif_netdev_ct_dump_next(struct dpif *dpif OVS_UNUSED,
struct ct_dpif_dump_state *dump_,
struct ct_dpif_entry *entry)
{
struct dp_netdev_ct_dump *dump;
INIT_CONTAINER(dump, dump_, up);
return conntrack_dump_next(&dump->dump, entry);
}
static int
dpif_netdev_ct_dump_done(struct dpif *dpif OVS_UNUSED,
struct ct_dpif_dump_state *dump_)
{
struct dp_netdev_ct_dump *dump;
int err;
INIT_CONTAINER(dump, dump_, up);
err = conntrack_dump_done(&dump->dump);
free(dump);
return err;
}
static int
dpif_netdev_ct_flush(struct dpif *dpif, const uint16_t *zone)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
return conntrack_flush(&dp->conntrack, zone);
}
const struct dpif_class dpif_netdev_class = {
"netdev",
dpif_netdev_init,
dpif_netdev_enumerate,
dpif_netdev_port_open_type,
dpif_netdev_open,
dpif_netdev_close,
dpif_netdev_destroy,
dpif_netdev_run,
dpif_netdev_wait,
dpif_netdev_get_stats,
dpif_netdev_port_add,
dpif_netdev_port_del,
dpif_netdev_port_set_config,
dpif_netdev_port_query_by_number,
dpif_netdev_port_query_by_name,
NULL, /* port_get_pid */
dpif_netdev_port_dump_start,
dpif_netdev_port_dump_next,
dpif_netdev_port_dump_done,
dpif_netdev_port_poll,
dpif_netdev_port_poll_wait,
dpif_netdev_flow_flush,
dpif_netdev_flow_dump_create,
dpif_netdev_flow_dump_destroy,
dpif_netdev_flow_dump_thread_create,
dpif_netdev_flow_dump_thread_destroy,
dpif_netdev_flow_dump_next,
dpif_netdev_operate,
NULL, /* recv_set */
NULL, /* handlers_set */
dpif_netdev_set_config,
dpif_netdev_queue_to_priority,
NULL, /* recv */
NULL, /* recv_wait */
NULL, /* recv_purge */
dpif_netdev_register_dp_purge_cb,
dpif_netdev_register_upcall_cb,
dpif_netdev_enable_upcall,
dpif_netdev_disable_upcall,
dpif_netdev_get_datapath_version,
dpif_netdev_ct_dump_start,
dpif_netdev_ct_dump_next,
dpif_netdev_ct_dump_done,
dpif_netdev_ct_flush,
dpif_netdev_meter_get_features,
dpif_netdev_meter_set,
dpif_netdev_meter_get,
dpif_netdev_meter_del,
};
static void
dpif_dummy_change_port_number(struct unixctl_conn *conn, int argc OVS_UNUSED,
const char *argv[], void *aux OVS_UNUSED)
{
struct dp_netdev_port *port;
struct dp_netdev *dp;
odp_port_t port_no;
ovs_mutex_lock(&dp_netdev_mutex);
dp = shash_find_data(&dp_netdevs, argv[1]);
if (!dp || !dpif_netdev_class_is_dummy(dp->class)) {
ovs_mutex_unlock(&dp_netdev_mutex);
unixctl_command_reply_error(conn, "unknown datapath or not a dummy");
return;
}
ovs_refcount_ref(&dp->ref_cnt);
ovs_mutex_unlock(&dp_netdev_mutex);
ovs_mutex_lock(&dp->port_mutex);
if (get_port_by_name(dp, argv[2], &port)) {
unixctl_command_reply_error(conn, "unknown port");
goto exit;
}
port_no = u32_to_odp(atoi(argv[3]));
if (!port_no || port_no == ODPP_NONE) {
unixctl_command_reply_error(conn, "bad port number");
goto exit;
}
if (dp_netdev_lookup_port(dp, port_no)) {
unixctl_command_reply_error(conn, "port number already in use");
goto exit;
}
/* Remove port. */
hmap_remove(&dp->ports, &port->node);
reconfigure_datapath(dp);
/* Reinsert with new port number. */
port->port_no = port_no;
hmap_insert(&dp->ports, &port->node, hash_port_no(port_no));
reconfigure_datapath(dp);
seq_change(dp->port_seq);
unixctl_command_reply(conn, NULL);
exit:
ovs_mutex_unlock(&dp->port_mutex);
dp_netdev_unref(dp);
}
static void
dpif_dummy_register__(const char *type)
{
struct dpif_class *class;
class = xmalloc(sizeof *class);
*class = dpif_netdev_class;
class->type = xstrdup(type);
dp_register_provider(class);
}
static void
dpif_dummy_override(const char *type)
{
int error;
/*
* Ignore EAFNOSUPPORT to allow --enable-dummy=system with
* a userland-only build. It's useful for testsuite.
*/
error = dp_unregister_provider(type);
if (error == 0 || error == EAFNOSUPPORT) {
dpif_dummy_register__(type);
}
}
void
dpif_dummy_register(enum dummy_level level)
{
if (level == DUMMY_OVERRIDE_ALL) {
struct sset types;
const char *type;
sset_init(&types);
dp_enumerate_types(&types);
SSET_FOR_EACH (type, &types) {
dpif_dummy_override(type);
}
sset_destroy(&types);
} else if (level == DUMMY_OVERRIDE_SYSTEM) {
dpif_dummy_override("system");
}
dpif_dummy_register__("dummy");
unixctl_command_register("dpif-dummy/change-port-number",
"dp port new-number",
3, 3, dpif_dummy_change_port_number, NULL);
}
/* Datapath Classifier. */
/* A set of rules that all have the same fields wildcarded. */
struct dpcls_subtable {
/* The fields are only used by writers. */
struct cmap_node cmap_node OVS_GUARDED; /* Within dpcls 'subtables_map'. */
/* These fields are accessed by readers. */
struct cmap rules; /* Contains "struct dpcls_rule"s. */
uint32_t hit_cnt; /* Number of match hits in subtable in current
optimization interval. */
struct netdev_flow_key mask; /* Wildcards for fields (const). */
/* 'mask' must be the last field, additional space is allocated here. */
};
/* Initializes 'cls' as a classifier that initially contains no classification
* rules. */
static void
dpcls_init(struct dpcls *cls)
{
cmap_init(&cls->subtables_map);
pvector_init(&cls->subtables);
}
static void
dpcls_destroy_subtable(struct dpcls *cls, struct dpcls_subtable *subtable)
{
VLOG_DBG("Destroying subtable %p for in_port %d", subtable, cls->in_port);
pvector_remove(&cls->subtables, subtable);
cmap_remove(&cls->subtables_map, &subtable->cmap_node,
subtable->mask.hash);
cmap_destroy(&subtable->rules);
ovsrcu_postpone(free, subtable);
}
/* Destroys 'cls'. Rules within 'cls', if any, are not freed; this is the
* caller's responsibility.
* May only be called after all the readers have been terminated. */
static void
dpcls_destroy(struct dpcls *cls)
{
if (cls) {
struct dpcls_subtable *subtable;
CMAP_FOR_EACH (subtable, cmap_node, &cls->subtables_map) {
ovs_assert(cmap_count(&subtable->rules) == 0);
dpcls_destroy_subtable(cls, subtable);
}
cmap_destroy(&cls->subtables_map);
pvector_destroy(&cls->subtables);
}
}
static struct dpcls_subtable *
dpcls_create_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
{
struct dpcls_subtable *subtable;
/* Need to add one. */
subtable = xmalloc(sizeof *subtable
- sizeof subtable->mask.mf + mask->len);
cmap_init(&subtable->rules);
subtable->hit_cnt = 0;
netdev_flow_key_clone(&subtable->mask, mask);
cmap_insert(&cls->subtables_map, &subtable->cmap_node, mask->hash);
/* Add the new subtable at the end of the pvector (with no hits yet) */
pvector_insert(&cls->subtables, subtable, 0);
VLOG_DBG("Creating %"PRIuSIZE". subtable %p for in_port %d",
cmap_count(&cls->subtables_map), subtable, cls->in_port);
pvector_publish(&cls->subtables);
return subtable;
}
static inline struct dpcls_subtable *
dpcls_find_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
{
struct dpcls_subtable *subtable;
CMAP_FOR_EACH_WITH_HASH (subtable, cmap_node, mask->hash,
&cls->subtables_map) {
if (netdev_flow_key_equal(&subtable->mask, mask)) {
return subtable;
}
}
return dpcls_create_subtable(cls, mask);
}
/* Periodically sort the dpcls subtable vectors according to hit counts */
static void
dpcls_sort_subtable_vector(struct dpcls *cls)
{
struct pvector *pvec = &cls->subtables;
struct dpcls_subtable *subtable;
PVECTOR_FOR_EACH (subtable, pvec) {
pvector_change_priority(pvec, subtable, subtable->hit_cnt);
subtable->hit_cnt = 0;
}
pvector_publish(pvec);
}
static inline void
dp_netdev_pmd_try_optimize(struct dp_netdev_pmd_thread *pmd,
struct polled_queue *poll_list, int poll_cnt)
{
struct dpcls *cls;
long long int now = time_msec();
if (now > pmd->rxq_interval) {
/* Get the cycles that were used to process each queue and store. */
for (unsigned i = 0; i < poll_cnt; i++) {
uint64_t rxq_cyc_curr = dp_netdev_rxq_get_cycles(poll_list[i].rxq,
RXQ_CYCLES_PROC_CURR);
dp_netdev_rxq_set_intrvl_cycles(poll_list[i].rxq, rxq_cyc_curr);
dp_netdev_rxq_set_cycles(poll_list[i].rxq, RXQ_CYCLES_PROC_CURR,
0);
}
/* Start new measuring interval */
pmd->rxq_interval = now + PMD_RXQ_INTERVAL_LEN;
}
if (now > pmd->next_optimization) {
/* Try to obtain the flow lock to block out revalidator threads.
* If not possible, just try next time. */
if (!ovs_mutex_trylock(&pmd->flow_mutex)) {
/* Optimize each classifier */
CMAP_FOR_EACH (cls, node, &pmd->classifiers) {
dpcls_sort_subtable_vector(cls);
}
ovs_mutex_unlock(&pmd->flow_mutex);
/* Start new measuring interval */
pmd->next_optimization = now + DPCLS_OPTIMIZATION_INTERVAL;
}
}
}
/* Insert 'rule' into 'cls'. */
static void
dpcls_insert(struct dpcls *cls, struct dpcls_rule *rule,
const struct netdev_flow_key *mask)
{
struct dpcls_subtable *subtable = dpcls_find_subtable(cls, mask);
/* Refer to subtable's mask, also for later removal. */
rule->mask = &subtable->mask;
cmap_insert(&subtable->rules, &rule->cmap_node, rule->flow.hash);
}
/* Removes 'rule' from 'cls', also destructing the 'rule'. */
static void
dpcls_remove(struct dpcls *cls, struct dpcls_rule *rule)
{
struct dpcls_subtable *subtable;
ovs_assert(rule->mask);
/* Get subtable from reference in rule->mask. */
INIT_CONTAINER(subtable, rule->mask, mask);
if (cmap_remove(&subtable->rules, &rule->cmap_node, rule->flow.hash)
== 0) {
/* Delete empty subtable. */
dpcls_destroy_subtable(cls, subtable);
pvector_publish(&cls->subtables);
}
}
/* Returns true if 'target' satisfies 'key' in 'mask', that is, if each 1-bit
* in 'mask' the values in 'key' and 'target' are the same. */
static inline bool
dpcls_rule_matches_key(const struct dpcls_rule *rule,
const struct netdev_flow_key *target)
{
const uint64_t *keyp = miniflow_get_values(&rule->flow.mf);
const uint64_t *maskp = miniflow_get_values(&rule->mask->mf);
uint64_t value;
NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(value, target, rule->flow.mf.map) {
if (OVS_UNLIKELY((value & *maskp++) != *keyp++)) {
return false;
}
}
return true;
}
/* For each miniflow in 'keys' performs a classifier lookup writing the result
* into the corresponding slot in 'rules'. If a particular entry in 'keys' is
* NULL it is skipped.
*
* This function is optimized for use in the userspace datapath and therefore
* does not implement a lot of features available in the standard
* classifier_lookup() function. Specifically, it does not implement
* priorities, instead returning any rule which matches the flow.
*
* Returns true if all miniflows found a corresponding rule. */
static bool
dpcls_lookup(struct dpcls *cls, const struct netdev_flow_key keys[],
struct dpcls_rule **rules, const size_t cnt,
int *num_lookups_p)
{
/* The received 'cnt' miniflows are the search-keys that will be processed
* to find a matching entry into the available subtables.
* The number of bits in map_type is equal to NETDEV_MAX_BURST. */
typedef uint32_t map_type;
#define MAP_BITS (sizeof(map_type) * CHAR_BIT)
BUILD_ASSERT_DECL(MAP_BITS >= NETDEV_MAX_BURST);
struct dpcls_subtable *subtable;
map_type keys_map = TYPE_MAXIMUM(map_type); /* Set all bits. */
map_type found_map;
uint32_t hashes[MAP_BITS];
const struct cmap_node *nodes[MAP_BITS];
if (cnt != MAP_BITS) {
keys_map >>= MAP_BITS - cnt; /* Clear extra bits. */
}
memset(rules, 0, cnt * sizeof *rules);
int lookups_match = 0, subtable_pos = 1;
/* The Datapath classifier - aka dpcls - is composed of subtables.
* Subtables are dynamically created as needed when new rules are inserted.
* Each subtable collects rules with matches on a specific subset of packet
* fields as defined by the subtable's mask. We proceed to process every
* search-key against each subtable, but when a match is found for a
* search-key, the search for that key can stop because the rules are
* non-overlapping. */
PVECTOR_FOR_EACH (subtable, &cls->subtables) {
int i;
/* Compute hashes for the remaining keys. Each search-key is
* masked with the subtable's mask to avoid hashing the wildcarded
* bits. */
ULLONG_FOR_EACH_1(i, keys_map) {
hashes[i] = netdev_flow_key_hash_in_mask(&keys[i],
&subtable->mask);
}
/* Lookup. */
found_map = cmap_find_batch(&subtable->rules, keys_map, hashes, nodes);
/* Check results. When the i-th bit of found_map is set, it means
* that a set of nodes with a matching hash value was found for the
* i-th search-key. Due to possible hash collisions we need to check
* which of the found rules, if any, really matches our masked
* search-key. */
ULLONG_FOR_EACH_1(i, found_map) {
struct dpcls_rule *rule;
CMAP_NODE_FOR_EACH (rule, cmap_node, nodes[i]) {
if (OVS_LIKELY(dpcls_rule_matches_key(rule, &keys[i]))) {
rules[i] = rule;
/* Even at 20 Mpps the 32-bit hit_cnt cannot wrap
* within one second optimization interval. */
subtable->hit_cnt++;
lookups_match += subtable_pos;
goto next;
}
}
/* None of the found rules was a match. Reset the i-th bit to
* keep searching this key in the next subtable. */
ULLONG_SET0(found_map, i); /* Did not match. */
next:
; /* Keep Sparse happy. */
}
keys_map &= ~found_map; /* Clear the found rules. */
if (!keys_map) {
if (num_lookups_p) {
*num_lookups_p = lookups_match;
}
return true; /* All found. */
}
subtable_pos++;
}
if (num_lookups_p) {
*num_lookups_p = lookups_match;
}
return false; /* Some misses. */
}