New event loop handling API
This commit introduces new APIs for applications and signal handling,
intended to replace isc_app for applications built on top of libisc.
* isc_app will be replaced with isc_loopmgr, which handles the
starting and stopping of applications. In isc_loopmgr, the main
thread is not blocked, but is part of the working thread set.
The loop manager will start a number of threads, each with a
uv_loop event loop running. Setup and teardown functions can be
assigned which will run when the loop starts and stops, and
jobs can be scheduled to run in the meantime. When
isc_loopmgr_shutdown() is run from any the loops, all loops
will shut down and the application can terminate.
* signal handling will now be handled with a separate isc_signal unit.
isc_loopmgr only handles SIGTERM and SIGINT for application
termination, but the application may install additional signal
handlers, such as SIGHUP as a signal to reload configuration.
* new job running primitives, isc_job and isc_async, have been added.
Both units schedule callbacks (specifying a callback function and
argument) on an event loop. The difference is that isc_job unit is
unlocked and not thread-safe, so it can be used to efficiently
run jobs in the same thread, while isc_async is thread-safe and
uses locking, so it can be used to pass jobs from one thread to
another.
* isc_tid will be used to track the thread ID in isc_loop worker
threads.
* unit tests have been added for the new APIs.
2022-07-26 13:03:22 +02:00
|
|
|
/*
|
|
|
|
* Copyright (C) Internet Systems Consortium, Inc. ("ISC")
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: MPL-2.0
|
|
|
|
*
|
|
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
|
|
* file, you can obtain one at https://mozilla.org/MPL/2.0/.
|
|
|
|
*
|
|
|
|
* See the COPYRIGHT file distributed with this work for additional
|
|
|
|
* information regarding copyright ownership.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#pragma once
|
|
|
|
|
|
|
|
#include <inttypes.h>
|
|
|
|
|
|
|
|
#include <isc/barrier.h>
|
|
|
|
#include <isc/lang.h>
|
|
|
|
#include <isc/loop.h>
|
|
|
|
#include <isc/magic.h>
|
|
|
|
#include <isc/mem.h>
|
|
|
|
#include <isc/refcount.h>
|
|
|
|
#include <isc/result.h>
|
|
|
|
#include <isc/signal.h>
|
2023-02-20 16:16:07 +01:00
|
|
|
#include <isc/stack.h>
|
New event loop handling API
This commit introduces new APIs for applications and signal handling,
intended to replace isc_app for applications built on top of libisc.
* isc_app will be replaced with isc_loopmgr, which handles the
starting and stopping of applications. In isc_loopmgr, the main
thread is not blocked, but is part of the working thread set.
The loop manager will start a number of threads, each with a
uv_loop event loop running. Setup and teardown functions can be
assigned which will run when the loop starts and stops, and
jobs can be scheduled to run in the meantime. When
isc_loopmgr_shutdown() is run from any the loops, all loops
will shut down and the application can terminate.
* signal handling will now be handled with a separate isc_signal unit.
isc_loopmgr only handles SIGTERM and SIGINT for application
termination, but the application may install additional signal
handlers, such as SIGHUP as a signal to reload configuration.
* new job running primitives, isc_job and isc_async, have been added.
Both units schedule callbacks (specifying a callback function and
argument) on an event loop. The difference is that isc_job unit is
unlocked and not thread-safe, so it can be used to efficiently
run jobs in the same thread, while isc_async is thread-safe and
uses locking, so it can be used to pass jobs from one thread to
another.
* isc_tid will be used to track the thread ID in isc_loop worker
threads.
* unit tests have been added for the new APIs.
2022-07-26 13:03:22 +02:00
|
|
|
#include <isc/thread.h>
|
|
|
|
#include <isc/types.h>
|
|
|
|
#include <isc/uv.h>
|
|
|
|
#include <isc/work.h>
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Per-thread loop
|
|
|
|
*/
|
|
|
|
#define LOOP_MAGIC ISC_MAGIC('L', 'O', 'O', 'P')
|
|
|
|
#define VALID_LOOP(t) ISC_MAGIC_VALID(t, LOOP_MAGIC)
|
|
|
|
|
|
|
|
typedef ISC_LIST(isc_job_t) isc_joblist_t;
|
2023-02-20 16:16:07 +01:00
|
|
|
typedef ISC_ASTACK(isc_job_t) isc_jobstack_t;
|
New event loop handling API
This commit introduces new APIs for applications and signal handling,
intended to replace isc_app for applications built on top of libisc.
* isc_app will be replaced with isc_loopmgr, which handles the
starting and stopping of applications. In isc_loopmgr, the main
thread is not blocked, but is part of the working thread set.
The loop manager will start a number of threads, each with a
uv_loop event loop running. Setup and teardown functions can be
assigned which will run when the loop starts and stops, and
jobs can be scheduled to run in the meantime. When
isc_loopmgr_shutdown() is run from any the loops, all loops
will shut down and the application can terminate.
* signal handling will now be handled with a separate isc_signal unit.
isc_loopmgr only handles SIGTERM and SIGINT for application
termination, but the application may install additional signal
handlers, such as SIGHUP as a signal to reload configuration.
* new job running primitives, isc_job and isc_async, have been added.
Both units schedule callbacks (specifying a callback function and
argument) on an event loop. The difference is that isc_job unit is
unlocked and not thread-safe, so it can be used to efficiently
run jobs in the same thread, while isc_async is thread-safe and
uses locking, so it can be used to pass jobs from one thread to
another.
* isc_tid will be used to track the thread ID in isc_loop worker
threads.
* unit tests have been added for the new APIs.
2022-07-26 13:03:22 +02:00
|
|
|
|
|
|
|
struct isc_loop {
|
|
|
|
int magic;
|
|
|
|
isc_refcount_t references;
|
|
|
|
isc_thread_t thread;
|
|
|
|
|
|
|
|
isc_loopmgr_t *loopmgr;
|
|
|
|
|
|
|
|
uv_loop_t loop;
|
|
|
|
uint32_t tid;
|
|
|
|
|
|
|
|
isc_mem_t *mctx;
|
|
|
|
|
|
|
|
/* states */
|
|
|
|
bool paused;
|
|
|
|
atomic_bool finished;
|
|
|
|
bool shuttingdown;
|
|
|
|
|
|
|
|
/* Async queue */
|
|
|
|
uv_async_t queue_trigger;
|
2023-02-20 16:16:07 +01:00
|
|
|
isc_jobstack_t queue_jobs;
|
New event loop handling API
This commit introduces new APIs for applications and signal handling,
intended to replace isc_app for applications built on top of libisc.
* isc_app will be replaced with isc_loopmgr, which handles the
starting and stopping of applications. In isc_loopmgr, the main
thread is not blocked, but is part of the working thread set.
The loop manager will start a number of threads, each with a
uv_loop event loop running. Setup and teardown functions can be
assigned which will run when the loop starts and stops, and
jobs can be scheduled to run in the meantime. When
isc_loopmgr_shutdown() is run from any the loops, all loops
will shut down and the application can terminate.
* signal handling will now be handled with a separate isc_signal unit.
isc_loopmgr only handles SIGTERM and SIGINT for application
termination, but the application may install additional signal
handlers, such as SIGHUP as a signal to reload configuration.
* new job running primitives, isc_job and isc_async, have been added.
Both units schedule callbacks (specifying a callback function and
argument) on an event loop. The difference is that isc_job unit is
unlocked and not thread-safe, so it can be used to efficiently
run jobs in the same thread, while isc_async is thread-safe and
uses locking, so it can be used to pass jobs from one thread to
another.
* isc_tid will be used to track the thread ID in isc_loop worker
threads.
* unit tests have been added for the new APIs.
2022-07-26 13:03:22 +02:00
|
|
|
|
|
|
|
/* Pause */
|
|
|
|
uv_async_t pause_trigger;
|
|
|
|
|
|
|
|
/* Shutdown */
|
|
|
|
uv_async_t shutdown_trigger;
|
|
|
|
isc_joblist_t setup_jobs;
|
|
|
|
isc_joblist_t teardown_jobs;
|
|
|
|
|
|
|
|
/* Destroy */
|
|
|
|
uv_async_t destroy_trigger;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Loop Manager
|
|
|
|
*/
|
|
|
|
#define LOOPMGR_MAGIC ISC_MAGIC('L', 'o', 'o', 'M')
|
|
|
|
#define VALID_LOOPMGR(t) ISC_MAGIC_VALID(t, LOOPMGR_MAGIC)
|
|
|
|
|
|
|
|
struct isc_loopmgr {
|
|
|
|
int magic;
|
|
|
|
isc_mem_t *mctx;
|
|
|
|
|
|
|
|
uint_fast32_t nloops;
|
|
|
|
|
|
|
|
atomic_bool shuttingdown;
|
|
|
|
atomic_bool running;
|
|
|
|
atomic_bool paused;
|
|
|
|
|
|
|
|
/* signal handling */
|
|
|
|
isc_signal_t *sigint;
|
|
|
|
isc_signal_t *sigterm;
|
|
|
|
|
|
|
|
/* pause/resume */
|
|
|
|
isc_barrier_t pausing;
|
|
|
|
isc_barrier_t resuming;
|
|
|
|
|
|
|
|
/* start/stop */
|
|
|
|
isc_barrier_t starting;
|
|
|
|
|
|
|
|
/* stopping */
|
|
|
|
isc_barrier_t stopping;
|
|
|
|
|
|
|
|
/* per-thread objects */
|
|
|
|
isc_loop_t *loops;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Signal Handler
|
|
|
|
*/
|
|
|
|
struct isc_signal {
|
|
|
|
uv_signal_t signal;
|
|
|
|
isc_loop_t *loop;
|
|
|
|
isc_signal_cb cb;
|
|
|
|
void *cbarg;
|
|
|
|
int signum;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Job to be scheduled in an event loop
|
|
|
|
*/
|
|
|
|
#define JOB_MAGIC ISC_MAGIC('J', 'O', 'B', ' ')
|
|
|
|
#define VALID_JOB(t) ISC_MAGIC_VALID(t, JOB_MAGIC)
|
|
|
|
|
|
|
|
struct isc_job {
|
|
|
|
int magic;
|
|
|
|
uv_idle_t idle;
|
|
|
|
isc_loop_t *loop;
|
|
|
|
isc_job_cb cb;
|
|
|
|
void *cbarg;
|
2023-02-20 16:16:07 +01:00
|
|
|
ISC_LINK(isc_job_t) link;
|
New event loop handling API
This commit introduces new APIs for applications and signal handling,
intended to replace isc_app for applications built on top of libisc.
* isc_app will be replaced with isc_loopmgr, which handles the
starting and stopping of applications. In isc_loopmgr, the main
thread is not blocked, but is part of the working thread set.
The loop manager will start a number of threads, each with a
uv_loop event loop running. Setup and teardown functions can be
assigned which will run when the loop starts and stops, and
jobs can be scheduled to run in the meantime. When
isc_loopmgr_shutdown() is run from any the loops, all loops
will shut down and the application can terminate.
* signal handling will now be handled with a separate isc_signal unit.
isc_loopmgr only handles SIGTERM and SIGINT for application
termination, but the application may install additional signal
handlers, such as SIGHUP as a signal to reload configuration.
* new job running primitives, isc_job and isc_async, have been added.
Both units schedule callbacks (specifying a callback function and
argument) on an event loop. The difference is that isc_job unit is
unlocked and not thread-safe, so it can be used to efficiently
run jobs in the same thread, while isc_async is thread-safe and
uses locking, so it can be used to pass jobs from one thread to
another.
* isc_tid will be used to track the thread ID in isc_loop worker
threads.
* unit tests have been added for the new APIs.
2022-07-26 13:03:22 +02:00
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Work to be offloaded to an external thread.
|
|
|
|
*/
|
|
|
|
struct isc_work {
|
|
|
|
uv_work_t work;
|
|
|
|
isc_loop_t *loop;
|
|
|
|
isc_work_cb work_cb;
|
|
|
|
isc_after_work_cb after_work_cb;
|
|
|
|
void *cbarg;
|
|
|
|
};
|
|
|
|
|
|
|
|
#define DEFAULT_LOOP(loopmgr) (&(loopmgr)->loops[0])
|
|
|
|
#define CURRENT_LOOP(loopmgr) (&(loopmgr)->loops[isc_tid()])
|
|
|
|
#define LOOP(loopmgr, tid) (&(loopmgr)->loops[tid])
|
|
|
|
#define ON_LOOP(loop) ((loop) == CURRENT_LOOP((loop)->loopmgr))
|