2
0
mirror of https://gitlab.isc.org/isc-projects/bind9 synced 2025-08-23 10:39:16 +00:00
bind/lib/isc/netmgr/udp.c

1127 lines
29 KiB
C
Raw Normal View History

/*
* Copyright (C) Internet Systems Consortium, Inc. ("ISC")
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, you can obtain one at https://mozilla.org/MPL/2.0/.
*
* See the COPYRIGHT file distributed with this work for additional
* information regarding copyright ownership.
*/
#include <unistd.h>
#include <uv.h>
#include <isc/atomic.h>
#include <isc/buffer.h>
#include <isc/condition.h>
#include <isc/errno.h>
#include <isc/magic.h>
#include <isc/mem.h>
#include <isc/netmgr.h>
#include <isc/random.h>
#include <isc/refcount.h>
#include <isc/region.h>
#include <isc/result.h>
#include <isc/sockaddr.h>
#include <isc/thread.h>
#include <isc/util.h>
#include "netmgr-int.h"
#include "uv-compat.h"
2020-02-14 08:14:03 +01:00
static isc_result_t
udp_send_direct(isc_nmsocket_t *sock, isc__nm_uvreq_t *req,
isc_sockaddr_t *peer);
2020-02-14 08:14:03 +01:00
static void
udp_recv_cb(uv_udp_t *handle, ssize_t nrecv, const uv_buf_t *buf,
const struct sockaddr *addr, unsigned flags);
2020-02-14 08:14:03 +01:00
static void
udp_send_cb(uv_udp_send_t *req, int status);
static void
udp_close_cb(uv_handle_t *uvhandle);
static void
udp_close_direct(isc_nmsocket_t *sock);
static void
failed_read_cb(isc_nmsocket_t *sock, isc_result_t result);
static void
failed_connect_cb(isc_nmsocket_t *sock, isc__nm_uvreq_t *req,
isc_result_t eresult);
isc_result_t
isc_nm_listenudp(isc_nm_t *mgr, isc_nmiface_t *iface, isc_nm_recv_cb_t cb,
2020-02-13 14:44:37 -08:00
void *cbarg, size_t extrahandlesize, isc_nmsocket_t **sockp) {
isc_nmsocket_t *nsock = NULL;
REQUIRE(VALID_NM(mgr));
/*
* We are creating mgr->nworkers duplicated sockets, one
* socket for each worker thread.
*/
nsock = isc_mem_get(mgr->mctx, sizeof(isc_nmsocket_t));
isc__nmsocket_init(nsock, mgr, isc_nm_udplistener, iface);
nsock->nchildren = mgr->nworkers;
atomic_init(&nsock->rchildren, mgr->nworkers);
2020-02-13 14:44:37 -08:00
nsock->children = isc_mem_get(mgr->mctx,
mgr->nworkers * sizeof(*nsock));
memset(nsock->children, 0, mgr->nworkers * sizeof(*nsock));
INSIST(nsock->recv_cb == NULL && nsock->recv_cbarg == NULL);
nsock->recv_cb = cb;
nsock->recv_cbarg = cbarg;
nsock->extrahandlesize = extrahandlesize;
for (size_t i = 0; i < mgr->nworkers; i++) {
isc_result_t result;
sa_family_t sa_family = iface->addr.type.sa.sa_family;
isc__netievent_udplisten_t *ievent = NULL;
2020-02-13 14:44:37 -08:00
isc_nmsocket_t *csock = &nsock->children[i];
isc__nmsocket_init(csock, mgr, isc_nm_udpsocket, iface);
csock->parent = nsock;
csock->tid = i;
csock->extrahandlesize = extrahandlesize;
INSIST(csock->recv_cb == NULL && csock->recv_cbarg == NULL);
csock->recv_cb = cb;
csock->recv_cbarg = cbarg;
csock->fd = socket(sa_family, SOCK_DGRAM, 0);
RUNTIME_CHECK(csock->fd >= 0);
result = isc__nm_socket_reuse(csock->fd);
RUNTIME_CHECK(result == ISC_R_SUCCESS ||
result == ISC_R_NOTIMPLEMENTED);
result = isc__nm_socket_reuse_lb(csock->fd);
RUNTIME_CHECK(result == ISC_R_SUCCESS ||
result == ISC_R_NOTIMPLEMENTED);
/* We don't check for the result, because SO_INCOMING_CPU can be
* available without the setter on Linux kernel version 4.4, and
* setting SO_INCOMING_CPU is just an optimization.
*/
(void)isc__nm_socket_incoming_cpu(csock->fd);
(void)isc__nm_socket_dontfrag(csock->fd, sa_family);
ievent = isc__nm_get_ievent(mgr, netievent_udplisten);
ievent->sock = csock;
isc__nm_enqueue_ievent(&mgr->workers[i],
(isc__netievent_t *)ievent);
}
*sockp = nsock;
return (ISC_R_SUCCESS);
}
/*%<
* Allocator for UDP recv operations. Limited to size 20 * (2^16 + 2),
* which allows enough space for recvmmsg() to get multiple messages at
* a time.
*
* Note this doesn't actually allocate anything, it just assigns the
* worker's receive buffer to a socket, and marks it as "in use".
*/
static void
udp_alloc_cb(uv_handle_t *handle, size_t size, uv_buf_t *buf) {
isc_nmsocket_t *sock = uv_handle_get_data(handle);
isc__networker_t *worker = NULL;
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(sock->type == isc_nm_udpsocket);
REQUIRE(isc__nm_in_netthread());
REQUIRE(size <= ISC_NETMGR_RECVBUF_SIZE);
worker = &sock->mgr->workers[sock->tid];
INSIST(!worker->recvbuf_inuse);
buf->base = worker->recvbuf;
buf->len = ISC_NETMGR_RECVBUF_SIZE;
worker->recvbuf_inuse = true;
}
/*
* Asynchronous 'udplisten' call handler: start listening on a UDP socket.
*/
void
2020-02-13 14:44:37 -08:00
isc__nm_async_udplisten(isc__networker_t *worker, isc__netievent_t *ev0) {
isc__netievent_udplisten_t *ievent = (isc__netievent_udplisten_t *)ev0;
2020-02-13 14:44:37 -08:00
isc_nmsocket_t *sock = ievent->sock;
int r, uv_bind_flags = 0;
int uv_init_flags = 0;
sa_family_t sa_family;
REQUIRE(sock->type == isc_nm_udpsocket);
REQUIRE(sock->iface != NULL);
REQUIRE(sock->parent != NULL);
REQUIRE(sock->tid == isc_nm_tid());
#ifdef UV_UDP_RECVMMSG
uv_init_flags |= UV_UDP_RECVMMSG;
#endif
uv_udp_init_ex(&worker->loop, &sock->uv_handle.udp, uv_init_flags);
uv_handle_set_data(&sock->uv_handle.handle, NULL);
isc__nmsocket_attach(sock,
(isc_nmsocket_t **)&sock->uv_handle.udp.data);
r = uv_udp_open(&sock->uv_handle.udp, sock->fd);
if (r == 0) {
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_OPEN]);
} else {
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_OPENFAIL]);
}
sa_family = sock->iface->addr.type.sa.sa_family;
if (sa_family == AF_INET6) {
uv_bind_flags |= UV_UDP_IPV6ONLY;
}
r = uv_udp_bind(&sock->uv_handle.udp,
&sock->parent->iface->addr.type.sa, uv_bind_flags);
if (r == UV_EADDRNOTAVAIL &&
isc__nm_socket_freebind(sock->fd, sa_family) == ISC_R_SUCCESS)
{
/*
* Retry binding with IP_FREEBIND (or equivalent option) if the
* address is not available. This helps with IPv6 tentative
* addresses which are reported by the route socket, although
* named is not yet able to properly bind to them.
*/
r = uv_udp_bind(&sock->uv_handle.udp,
&sock->parent->iface->addr.type.sa,
uv_bind_flags);
}
if (r < 0) {
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_BINDFAIL]);
}
#ifdef ISC_RECV_BUFFER_SIZE
uv_recv_buffer_size(&sock->uv_handle.handle,
&(int){ ISC_RECV_BUFFER_SIZE });
#endif
#ifdef ISC_SEND_BUFFER_SIZE
uv_send_buffer_size(&sock->uv_handle.handle,
&(int){ ISC_SEND_BUFFER_SIZE });
#endif
uv_udp_recv_start(&sock->uv_handle.udp, udp_alloc_cb, udp_recv_cb);
}
static void
udp_stop_cb(uv_handle_t *handle) {
isc_nmsocket_t *sock = uv_handle_get_data(handle);
atomic_store(&sock->closed, true);
isc__nmsocket_detach((isc_nmsocket_t **)&sock->uv_handle.udp.data);
}
static void
2020-02-13 14:44:37 -08:00
stop_udp_child(isc_nmsocket_t *sock) {
REQUIRE(sock->type == isc_nm_udpsocket);
REQUIRE(sock->tid == isc_nm_tid());
uv_udp_recv_stop(&sock->uv_handle.udp);
uv_close((uv_handle_t *)&sock->uv_handle.udp, udp_stop_cb);
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_CLOSE]);
LOCK(&sock->parent->lock);
atomic_fetch_sub(&sock->parent->rchildren, 1);
UNLOCK(&sock->parent->lock);
BROADCAST(&sock->parent->cond);
}
static void
2020-02-13 14:44:37 -08:00
stoplistening(isc_nmsocket_t *sock) {
REQUIRE(sock->type == isc_nm_udplistener);
for (int i = 0; i < sock->nchildren; i++) {
isc__netievent_udpstop_t *event = NULL;
if (isc_nm_tid() == sock->children[i].tid) {
stop_udp_child(&sock->children[i]);
continue;
}
event = isc__nm_get_ievent(sock->mgr, netievent_udpstop);
event->sock = &sock->children[i];
isc__nm_enqueue_ievent(&sock->mgr->workers[i],
(isc__netievent_t *)event);
}
LOCK(&sock->lock);
while (atomic_load_relaxed(&sock->rchildren) > 0) {
WAIT(&sock->cond, &sock->lock);
}
atomic_store(&sock->closed, true);
UNLOCK(&sock->lock);
isc__nmsocket_prep_destroy(sock);
}
void
isc__nm_udp_stoplistening(isc_nmsocket_t *sock) {
isc__netievent_udpstop_t *ievent = NULL;
/* We can't be launched from network thread, we'd deadlock */
REQUIRE(!isc__nm_in_netthread());
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(sock->type == isc_nm_udplistener);
/*
* If the manager is interlocked, re-enqueue this as an asynchronous
* event. Otherwise, go ahead and stop listening right away.
*/
if (!isc__nm_acquire_interlocked(sock->mgr)) {
ievent = isc__nm_get_ievent(sock->mgr, netievent_udpstop);
ievent->sock = sock;
isc__nm_enqueue_ievent(&sock->mgr->workers[sock->tid],
(isc__netievent_t *)ievent);
} else {
stoplistening(sock);
isc__nm_drop_interlocked(sock->mgr);
}
}
/*
* Asynchronous 'udpstop' call handler: stop listening on a UDP socket.
*/
void
2020-02-13 14:44:37 -08:00
isc__nm_async_udpstop(isc__networker_t *worker, isc__netievent_t *ev0) {
isc__netievent_udpstop_t *ievent = (isc__netievent_udpstop_t *)ev0;
2020-02-13 14:44:37 -08:00
isc_nmsocket_t *sock = ievent->sock;
REQUIRE(sock->iface != NULL);
UNUSED(worker);
/*
* If this is a child socket, stop listening and return.
*/
if (sock->parent != NULL) {
stop_udp_child(sock);
return;
}
/*
* If network manager is paused, re-enqueue the event for later.
*/
if (!isc__nm_acquire_interlocked(sock->mgr)) {
isc__netievent_udplisten_t *event = NULL;
event = isc__nm_get_ievent(sock->mgr, netievent_udpstop);
event->sock = sock;
isc__nm_enqueue_ievent(&sock->mgr->workers[sock->tid],
(isc__netievent_t *)event);
} else {
stoplistening(sock);
isc__nm_drop_interlocked(sock->mgr);
}
}
/*
* udp_recv_cb handles incoming UDP packet from uv. The buffer here is
* reused for a series of packets, so we need to allocate a new one. This
* new one can be reused to send the response then.
*/
static void
udp_recv_cb(uv_udp_t *handle, ssize_t nrecv, const uv_buf_t *buf,
2020-02-13 14:44:37 -08:00
const struct sockaddr *addr, unsigned flags) {
isc_result_t result;
isc_nmhandle_t *nmhandle = NULL;
isc_sockaddr_t sockaddr;
isc_nmsocket_t *sock = uv_handle_get_data((uv_handle_t *)handle);
2020-02-13 14:44:37 -08:00
isc_region_t region;
uint32_t maxudp;
bool free_buf;
isc_nm_recv_cb_t cb;
void *cbarg;
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(sock->tid == isc_nm_tid());
#ifdef UV_UDP_MMSG_FREE
free_buf = ((flags & UV_UDP_MMSG_FREE) == UV_UDP_MMSG_FREE);
#elif UV_UDP_MMSG_CHUNK
free_buf = ((flags & UV_UDP_MMSG_CHUNK) == 0);
#else
free_buf = true;
UNUSED(flags);
#endif
/*
* Three possible reasons to return now without processing:
* - If addr == NULL, in which case it's the end of stream;
* we can free the buffer and bail.
*/
if (addr == NULL) {
goto done;
}
/*
* - If we're simulating a firewall blocking UDP packets
* bigger than 'maxudp' bytes for testing purposes.
*/
maxudp = atomic_load(&sock->mgr->maxudp);
if ((maxudp != 0 && (uint32_t)nrecv > maxudp)) {
goto done;
}
/*
* - If the socket is no longer active.
*/
if (!isc__nmsocket_active(sock)) {
goto done;
}
region.base = (unsigned char *)buf->base;
region.length = nrecv;
cb = sock->recv_cb;
cbarg = sock->recv_cbarg;
if (atomic_load(&sock->client)) {
if (nrecv < 0) {
failed_read_cb(sock, isc__nm_uverr2result(nrecv));
return;
}
cb(sock->statichandle, ISC_R_SUCCESS, &region, cbarg);
} else {
result = isc_sockaddr_fromsockaddr(&sockaddr, addr);
RUNTIME_CHECK(result == ISC_R_SUCCESS);
nmhandle = isc__nmhandle_get(sock, &sockaddr, NULL);
cb(nmhandle, ISC_R_SUCCESS, &region, cbarg);
/*
* If the recv callback wants to hold on to the handle,
* it needs to attach to it.
*/
isc_nmhandle_detach(&nmhandle);
}
done:
if (free_buf) {
isc__nm_free_uvbuf(sock, buf);
}
}
/*
* Send the data in 'region' to a peer via a UDP socket. We try to find
* a proper sibling/child socket so that we won't have to jump to another
* thread.
*/
void
isc__nm_udp_send(isc_nmhandle_t *handle, isc_region_t *region, isc_nm_cb_t cb,
2020-02-13 14:44:37 -08:00
void *cbarg) {
isc_nmsocket_t *sock = handle->sock;
isc_nmsocket_t *psock = NULL, *rsock = sock;
2020-02-13 14:44:37 -08:00
isc_sockaddr_t *peer = &handle->peer;
2019-12-03 00:07:59 -08:00
isc__netievent_udpsend_t *ievent = NULL;
2020-02-13 14:44:37 -08:00
isc__nm_uvreq_t *uvreq = NULL;
uint32_t maxudp = atomic_load(&sock->mgr->maxudp);
int ntid;
if (!isc__nmsocket_active(sock)) {
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_SENDFAIL]);
cb(handle, ISC_R_CANCELED, cbarg);
return;
}
if (sock->server != NULL && !isc__nmsocket_active(sock->server)) {
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_SENDFAIL]);
cb(handle, ISC_R_CANCELED, cbarg);
return;
}
if (atomic_load(&sock->mgr->closing)) {
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_SENDFAIL]);
cb(handle, ISC_R_CANCELED, cbarg);
return;
}
/*
* We're simulating a firewall blocking UDP packets bigger than
* 'maxudp' bytes, for testing purposes.
*
* The client would ordinarily have unreferenced the handle
* in the callback, but that won't happen in this case, so
* we need to do so here.
*/
if (maxudp != 0 && region->length > maxudp) {
isc_nmhandle_detach(&handle);
return;
}
if (sock->type == isc_nm_udpsocket && !atomic_load(&sock->client)) {
INSIST(sock->parent != NULL);
psock = sock->parent;
} else if (sock->type == isc_nm_udplistener) {
psock = sock;
} else if (!atomic_load(&sock->client)) {
INSIST(0);
ISC_UNREACHABLE();
}
/*
2020-02-18 13:38:41 -08:00
* If we're in the network thread, we can send directly. If the
* handle is associated with a UDP socket, we can reuse its thread
* (assuming CPU affinity). Otherwise, pick a thread at random.
*/
if (isc__nm_in_netthread()) {
ntid = isc_nm_tid();
} else if (sock->type == isc_nm_udpsocket &&
!atomic_load(&sock->client)) {
ntid = sock->tid;
} else {
ntid = (int)isc_random_uniform(sock->nchildren);
}
if (psock != NULL) {
rsock = &psock->children[ntid];
}
uvreq = isc__nm_uvreq_get(sock->mgr, sock);
uvreq->uvbuf.base = (char *)region->base;
uvreq->uvbuf.len = region->length;
isc_nmhandle_attach(handle, &uvreq->handle);
uvreq->cb.send = cb;
uvreq->cbarg = cbarg;
if (isc_nm_tid() == rsock->tid) {
/*
* If we're in the same thread as the socket we can send
* the data directly, but we still need to return errors
* via the callback for API consistency.
*/
isc_result_t result = udp_send_direct(rsock, uvreq, peer);
if (result != ISC_R_SUCCESS) {
isc__nm_incstats(rsock->mgr,
rsock->statsindex[STATID_SENDFAIL]);
uvreq->cb.send(uvreq->handle, result, uvreq->cbarg);
isc__nm_uvreq_put(&uvreq, sock);
}
} else {
/*
* We need to create an event and pass it using async channel
*/
ievent = isc__nm_get_ievent(sock->mgr, netievent_udpsend);
ievent->sock = rsock;
ievent->peer = *peer;
ievent->req = uvreq;
isc__nm_enqueue_ievent(&sock->mgr->workers[rsock->tid],
(isc__netievent_t *)ievent);
}
}
/*
* Asynchronous 'udpsend' event handler: send a packet on a UDP socket.
*/
void
2020-02-13 14:44:37 -08:00
isc__nm_async_udpsend(isc__networker_t *worker, isc__netievent_t *ev0) {
isc_result_t result;
isc__netievent_udpsend_t *ievent = (isc__netievent_udpsend_t *)ev0;
isc_nmsocket_t *sock = ievent->sock;
isc__nm_uvreq_t *uvreq = ievent->req;
REQUIRE(sock->type == isc_nm_udpsocket);
REQUIRE(worker->id == sock->tid);
if (!isc__nmsocket_active(ievent->sock)) {
uvreq->cb.send(uvreq->handle, ISC_R_CANCELED, uvreq->cbarg);
isc__nm_uvreq_put(&uvreq, sock);
return;
}
result = udp_send_direct(sock, uvreq, &ievent->peer);
if (result != ISC_R_SUCCESS) {
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_SENDFAIL]);
uvreq->cb.send(uvreq->handle, result, uvreq->cbarg);
isc__nm_uvreq_put(&uvreq, sock);
}
}
static void
2020-02-13 14:44:37 -08:00
udp_send_cb(uv_udp_send_t *req, int status) {
isc_result_t result = ISC_R_SUCCESS;
isc__nm_uvreq_t *uvreq = (isc__nm_uvreq_t *)req->data;
isc_nmsocket_t *sock = uvreq->sock;
REQUIRE(VALID_UVREQ(uvreq));
REQUIRE(VALID_NMHANDLE(uvreq->handle));
if (status < 0) {
result = isc__nm_uverr2result(status);
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_SENDFAIL]);
}
uvreq->cb.send(uvreq->handle, result, uvreq->cbarg);
isc__nm_uvreq_put(&uvreq, uvreq->sock);
}
/*
* udp_send_direct sends buf to a peer on a socket. Sock has to be in
* the same thread as the callee.
*/
static isc_result_t
udp_send_direct(isc_nmsocket_t *sock, isc__nm_uvreq_t *req,
2020-02-13 14:44:37 -08:00
isc_sockaddr_t *peer) {
const struct sockaddr *sa = &peer->type.sa;
int r;
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(VALID_UVREQ(req));
REQUIRE(sock->tid == isc_nm_tid());
REQUIRE(sock->type == isc_nm_udpsocket);
if (!isc__nmsocket_active(sock)) {
return (ISC_R_CANCELED);
}
if (sock->server != NULL && !isc__nmsocket_active(sock->server)) {
return (ISC_R_CANCELED);
}
if (atomic_load(&sock->mgr->closing)) {
return (ISC_R_CANCELED);
}
#ifdef HAVE_UV_UDP_CONNECT
/*
* If we used uv_udp_connect() (and not the shim version for
* older versions of libuv), then the peer address has to be
* set to NULL or else uv_udp_send() could fail or assert,
* depending on the libuv version.
*/
if (atomic_load(&sock->connected)) {
sa = NULL;
}
#endif
r = uv_udp_send(&req->uv_req.udp_send, &sock->uv_handle.udp,
&req->uvbuf, 1, sa, udp_send_cb);
if (r < 0) {
return (isc__nm_uverr2result(r));
}
return (ISC_R_SUCCESS);
}
static int
udp_connect_direct(isc_nmsocket_t *sock, isc__nm_uvreq_t *req) {
isc__networker_t *worker = NULL;
int uv_bind_flags = UV_UDP_REUSEADDR;
int r;
REQUIRE(isc__nm_in_netthread());
REQUIRE(sock->tid == isc_nm_tid());
worker = &sock->mgr->workers[isc_nm_tid()];
atomic_store(&sock->connecting, true);
r = uv_udp_init(&worker->loop, &sock->uv_handle.udp);
if (r != 0) {
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_OPENFAIL]);
/* Socket was never opened; no need for udp_close_direct() */
atomic_store(&sock->closed, true);
atomic_store(&sock->result, isc__nm_uverr2result(r));
atomic_store(&sock->connect_error, true);
return (r);
}
r = uv_udp_open(&sock->uv_handle.udp, sock->fd);
if (r != 0) {
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_OPENFAIL]);
atomic_store(&sock->closed, true);
atomic_store(&sock->connect_error, true);
atomic_store(&sock->result, isc__nm_uverr2result(r));
return (r);
}
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_OPEN]);
if (sock->iface->addr.type.sa.sa_family == AF_INET6) {
uv_bind_flags |= UV_UDP_IPV6ONLY;
}
r = uv_udp_bind(&sock->uv_handle.udp, &sock->iface->addr.type.sa,
uv_bind_flags);
if (r != 0) {
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_BINDFAIL]);
atomic_store(&sock->connect_error, true);
atomic_store(&sock->result, isc__nm_uverr2result(r));
udp_close_direct(sock);
return (r);
}
uv_handle_set_data(&sock->uv_handle.handle, sock);
r = isc_uv_udp_connect(&sock->uv_handle.udp, &req->peer.type.sa);
if (r != 0) {
isc__nm_incstats(sock->mgr,
sock->statsindex[STATID_CONNECTFAIL]);
atomic_store(&sock->connect_error, true);
atomic_store(&sock->result, isc__nm_uverr2result(r));
udp_close_direct(sock);
return (r);
}
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_CONNECT]);
atomic_store(&sock->connecting, false);
#ifdef ISC_RECV_BUFFER_SIZE
uv_recv_buffer_size(&sock->uv_handle.handle,
&(int){ ISC_RECV_BUFFER_SIZE });
#endif
#ifdef ISC_SEND_BUFFER_SIZE
uv_send_buffer_size(&sock->uv_handle.handle,
&(int){ ISC_SEND_BUFFER_SIZE });
#endif
return (0);
}
/*
* Asynchronous 'udpconnect' call handler: open a new UDP socket and call
* the 'open' callback with a handle.
*/
void
isc__nm_async_udpconnect(isc__networker_t *worker, isc__netievent_t *ev0) {
isc__netievent_udpconnect_t *ievent =
(isc__netievent_udpconnect_t *)ev0;
isc_nmsocket_t *sock = ievent->sock;
isc__nm_uvreq_t *req = ievent->req;
isc_nmhandle_t *handle = NULL;
isc_nm_cb_t cb;
void *cbarg;
int r;
isc_result_t result;
UNUSED(worker);
REQUIRE(sock->type == isc_nm_udpsocket);
REQUIRE(sock->iface != NULL);
REQUIRE(sock->parent == NULL);
REQUIRE(sock->tid == isc_nm_tid());
cb = sock->connect_cb;
cbarg = sock->connect_cbarg;
r = udp_connect_direct(sock, req);
if (r != 0) {
failed_connect_cb(sock, req, isc__nm_uverr2result(r));
LOCK(&sock->lock);
SIGNAL(&sock->cond);
UNLOCK(&sock->lock);
return;
}
atomic_store(&sock->connected, true);
atomic_store(&sock->result, ISC_R_SUCCESS);
result = atomic_load(&sock->result);
handle = isc__nmhandle_get(sock, &req->peer, &sock->iface->addr);
cb(handle, result, cbarg);
LOCK(&sock->lock);
SIGNAL(&sock->cond);
UNLOCK(&sock->lock);
/*
* The sock is now attached to the handle.
*/
isc__nmsocket_detach(&sock);
/*
* The connect callback should have attached to the handle.
* If it didn't, the socket will be closed now.
*/
isc_nmhandle_detach(&handle);
}
isc_result_t
isc_nm_udpconnect(isc_nm_t *mgr, isc_nmiface_t *local, isc_nmiface_t *peer,
isc_nm_cb_t cb, void *cbarg, unsigned int timeout,
size_t extrahandlesize) {
isc_result_t result = ISC_R_SUCCESS;
isc_nmsocket_t *sock = NULL, *tmp = NULL;
isc__netievent_udpconnect_t *event = NULL;
isc__nm_uvreq_t *req = NULL;
sa_family_t sa_family;
REQUIRE(VALID_NM(mgr));
REQUIRE(local != NULL);
REQUIRE(peer != NULL);
sa_family = peer->addr.type.sa.sa_family;
sock = isc_mem_get(mgr->mctx, sizeof(isc_nmsocket_t));
isc__nmsocket_init(sock, mgr, isc_nm_udpsocket, local);
INSIST(sock->connect_cb == NULL && sock->connect_cbarg == NULL);
sock->connect_cb = cb;
sock->connect_cbarg = cbarg;
sock->read_timeout = timeout;
sock->extrahandlesize = extrahandlesize;
sock->peer = peer->addr;
atomic_init(&sock->client, true);
sock->fd = socket(sa_family, SOCK_DGRAM, 0);
RUNTIME_CHECK(sock->fd >= 0);
result = isc__nm_socket_reuse(sock->fd);
RUNTIME_CHECK(result == ISC_R_SUCCESS ||
result == ISC_R_NOTIMPLEMENTED);
result = isc__nm_socket_reuse_lb(sock->fd);
RUNTIME_CHECK(result == ISC_R_SUCCESS ||
result == ISC_R_NOTIMPLEMENTED);
(void)isc__nm_socket_incoming_cpu(sock->fd);
(void)isc__nm_socket_dontfrag(sock->fd, sa_family);
req = isc__nm_uvreq_get(mgr, sock);
req->cb.connect = cb;
req->cbarg = cbarg;
req->peer = peer->addr;
req->local = local->addr;
event = isc__nm_get_ievent(mgr, netievent_udpconnect);
event->sock = sock;
event->req = req;
/*
* Hold an additional sock reference so async callbacks
* can't destroy it until we're ready.
*/
isc__nmsocket_attach(sock, &tmp);
if (isc__nm_in_netthread()) {
sock->tid = isc_nm_tid();
isc__nm_async_udpconnect(&mgr->workers[sock->tid],
(isc__netievent_t *)event);
isc__nm_put_ievent(mgr, event);
isc__nm_uvreq_put(&req, sock);
} else {
sock->tid = isc_random_uniform(mgr->nworkers);
isc__nm_enqueue_ievent(&mgr->workers[sock->tid],
(isc__netievent_t *)event);
LOCK(&sock->lock);
while (!atomic_load(&sock->connected) &&
!atomic_load(&sock->connect_error)) {
WAIT(&sock->cond, &sock->lock);
}
UNLOCK(&sock->lock);
isc__nm_uvreq_put(&req, sock);
}
if (atomic_load(&sock->result) != ISC_R_SUCCESS) {
result = atomic_load(&sock->result);
}
isc__nmsocket_detach(&tmp);
return (result);
}
static void
udp_read_cb(uv_udp_t *handle, ssize_t nrecv, const uv_buf_t *buf,
const struct sockaddr *addr, unsigned flags) {
isc_nmsocket_t *sock = uv_handle_get_data((uv_handle_t *)handle);
if (sock->timer_running) {
uv_timer_stop(&sock->timer);
sock->timer_running = false;
}
udp_recv_cb(handle, nrecv, buf, addr, flags);
uv_udp_recv_stop(&sock->uv_handle.udp);
}
static void
failed_read_cb(isc_nmsocket_t *sock, isc_result_t result) {
isc_nm_recv_cb_t cb;
void *cbarg = NULL;
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(sock->statichandle != NULL);
if (sock->timer_initialized) {
uv_timer_stop(&sock->timer);
sock->timer_running = false;
}
uv_udp_recv_stop(&sock->uv_handle.udp);
cb = sock->recv_cb;
cbarg = sock->recv_cbarg;
isc__nmsocket_clearcb(sock);
if (cb != NULL) {
cb(sock->statichandle, result, NULL, cbarg);
}
}
static void
readtimeout_cb(uv_timer_t *handle) {
isc_nmsocket_t *sock = uv_handle_get_data((uv_handle_t *)handle);
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(sock->tid == isc_nm_tid());
/*
* Timeout; stop reading and process whatever we have.
*/
failed_read_cb(sock, ISC_R_TIMEDOUT);
}
/*
* Asynchronous 'udpread' call handler: start or resume reading on a socket;
* pause reading and call the 'recv' callback after each datagram.
*/
void
isc__nm_async_udpread(isc__networker_t *worker, isc__netievent_t *ev0) {
isc__netievent_udpread_t *ievent = (isc__netievent_udpread_t *)ev0;
isc_nmsocket_t *sock = ievent->sock;
if (!isc__nmsocket_active(sock)) {
failed_read_cb(sock, ISC_R_CANCELED);
return;
}
if (sock->server != NULL && !isc__nmsocket_active(sock->server)) {
failed_read_cb(sock, ISC_R_CANCELED);
return;
}
if (atomic_load(&sock->mgr->closing)) {
failed_read_cb(sock, ISC_R_CANCELED);
return;
}
REQUIRE(worker->id == isc_nm_tid());
if (sock->read_timeout != 0) {
if (!sock->timer_initialized) {
uv_timer_init(&worker->loop, &sock->timer);
uv_handle_set_data((uv_handle_t *)&sock->timer, sock);
sock->timer_initialized = true;
}
uv_timer_start(&sock->timer, readtimeout_cb, sock->read_timeout,
0);
sock->timer_running = true;
}
uv_udp_recv_start(&sock->uv_handle.udp, udp_alloc_cb, udp_read_cb);
}
void
isc__nm_udp_read(isc_nmhandle_t *handle, isc_nm_recv_cb_t cb, void *cbarg) {
isc_nmsocket_t *sock = handle->sock;
isc__netievent_startread_t *ievent = NULL;
REQUIRE(VALID_NMHANDLE(handle));
REQUIRE(VALID_NMSOCK(handle->sock));
REQUIRE(handle->sock->type == isc_nm_udpsocket);
if (!isc__nmsocket_active(sock)) {
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_RECVFAIL]);
cb(handle, ISC_R_CANCELED, NULL, cbarg);
return;
}
if (sock->server != NULL && !isc__nmsocket_active(sock->server)) {
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_SENDFAIL]);
cb(handle, ISC_R_CANCELED, NULL, cbarg);
return;
}
if (atomic_load(&sock->mgr->closing)) {
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_SENDFAIL]);
cb(handle, ISC_R_CANCELED, NULL, cbarg);
return;
}
REQUIRE(sock->tid == isc_nm_tid());
sock->recv_cb = cb;
sock->recv_cbarg = cbarg;
ievent = isc__nm_get_ievent(sock->mgr, netievent_udpread);
ievent->sock = sock;
if (sock->tid == isc_nm_tid()) {
isc__nm_async_udpread(&sock->mgr->workers[sock->tid],
(isc__netievent_t *)ievent);
isc__nm_put_ievent(sock->mgr, ievent);
} else {
isc__nm_enqueue_ievent(&sock->mgr->workers[sock->tid],
(isc__netievent_t *)ievent);
}
}
static void
udp_close_cb(uv_handle_t *uvhandle) {
isc_nmsocket_t *sock = uv_handle_get_data(uvhandle);
REQUIRE(VALID_NMSOCK(sock));
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_CLOSE]);
atomic_store(&sock->closed, true);
isc__nmsocket_prep_destroy(sock);
}
static void
timer_close_cb(uv_handle_t *uvhandle) {
isc_nmsocket_t *sock = uv_handle_get_data(uvhandle);
REQUIRE(VALID_NMSOCK(sock));
uv_close(&sock->uv_handle.handle, udp_close_cb);
}
static void
udp_close_direct(isc_nmsocket_t *sock) {
uv_udp_recv_stop(&sock->uv_handle.udp);
if (sock->timer_running) {
uv_timer_stop(&sock->timer);
sock->timer_running = false;
}
if (sock->timer_initialized) {
sock->timer_initialized = false;
uv_handle_set_data((uv_handle_t *)&sock->timer, sock);
uv_close((uv_handle_t *)&sock->timer, timer_close_cb);
} else {
uv_close(&sock->uv_handle.handle, udp_close_cb);
}
}
void
isc__nm_async_udpclose(isc__networker_t *worker, isc__netievent_t *ev0) {
isc__netievent_udpclose_t *ievent = (isc__netievent_udpclose_t *)ev0;
isc_nmsocket_t *sock = ievent->sock;
REQUIRE(worker->id == ievent->sock->tid);
udp_close_direct(sock);
}
void
isc__nm_udp_close(isc_nmsocket_t *sock) {
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(sock->type == isc_nm_udpsocket);
REQUIRE(!isc__nmsocket_active(sock));
if (sock->tid == isc_nm_tid()) {
udp_close_direct(sock);
} else {
isc__netievent_udpclose_t *ievent =
isc__nm_get_ievent(sock->mgr, netievent_udpclose);
ievent->sock = sock;
isc__nm_enqueue_ievent(&sock->mgr->workers[sock->tid],
(isc__netievent_t *)ievent);
}
}
static void
failed_connect_cb(isc_nmsocket_t *sock, isc__nm_uvreq_t *req,
isc_result_t eresult) {
REQUIRE(sock->tid == isc_nm_tid());
if (sock->timer_running) {
uv_timer_stop(&sock->timer);
sock->timer_running = false;
}
if (!atomic_load(&sock->connecting)) {
return;
}
atomic_store(&sock->connecting, false);
INSIST(req != NULL);
req = uv_handle_get_data((uv_handle_t *)&sock->timer);
isc__nmsocket_clearcb(sock);
if (req->cb.connect != NULL) {
req->cb.connect(NULL, eresult, req->cbarg);
}
req->cb.connect = NULL;
req->cbarg = NULL;
isc__nmsocket_detach(&sock);
}
void
isc__nm_udp_shutdown(isc_nmsocket_t *sock) {
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(sock->tid == isc_nm_tid());
if (sock->type != isc_nm_udpsocket) {
return;
}
if (atomic_load(&sock->connecting)) {
failed_connect_cb(sock, NULL, ISC_R_CANCELED);
return;
}
/*
* If the socket is active, mark it inactive and
* continue. If it isn't active, stop now.
*/
if (!isc__nmsocket_deactivate(sock)) {
return;
}
if (sock->statichandle != NULL) {
failed_read_cb(sock, ISC_R_CANCELED);
}
}
void
isc__nm_udp_cancelread(isc_nmhandle_t *handle) {
isc_nmsocket_t *sock = NULL;
isc__netievent_udpcancel_t *ievent = NULL;
REQUIRE(VALID_NMHANDLE(handle));
sock = handle->sock;
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(sock->type == isc_nm_udpsocket);
ievent = isc__nm_get_ievent(sock->mgr, netievent_udpcancel);
ievent->sock = sock;
isc_nmhandle_attach(handle, &ievent->handle);
isc__nm_enqueue_ievent(&sock->mgr->workers[sock->tid],
(isc__netievent_t *)ievent);
}
void
isc__nm_async_udpcancel(isc__networker_t *worker, isc__netievent_t *ev0) {
isc__netievent_udpcancel_t *ievent = (isc__netievent_udpcancel_t *)ev0;
isc_nmsocket_t *sock = ievent->sock;
isc_nmhandle_t *handle = ievent->handle;
REQUIRE(worker->id == ievent->sock->tid);
uv_udp_recv_stop(&sock->uv_handle.udp);
if (atomic_load(&sock->client)) {
failed_read_cb(sock, ISC_R_EOF);
}
isc_nmhandle_detach(&handle);
}