The change introduced by commit be159f556568abb9a5dbc494f8441eefdd304a7f
was not fully complete. Adjust ./configure summary so that it reflects
the new way the --with-tuning switch works, fixing the Autoconf variable
used for determining the value of that switch. Fix win32utils/Configure
so that it behaves the same way as its Unix counterpart.
* ctx needs to be destroyed before it is regenerated.
* emit the name of the signature to be replaced.
* cleanup memory before asserting so post longjump doesn't detect a
memory leak.
* comment code.
If a filename (the last argument) is not provided for named-checkzone or
named-compilezone, or if it is a single dash "-" character,
zone data will be read from stdin.
Example of invocation:
cat /etc/zone_name.db | named-compilezone -f text -F raw \
-o zone_name.raw zone_name
BSD sed does not recognize \s as a whitespace matching token. Make the
sed script in doc/arm/Makefile.in which ensures GitLab identifiers are
not split across lines portable by replacing \s with [[:space:]].
Artifacts generated by the docs:sid:amd64 job need to be retained longer
than for other jobs as they are used for building bind.isc.org contents.
If these artifacts are removed too quickly, pipelines in the pages/bind
GitLab project start failing, preventing content updates from being
published. Increase lifetime of the relevant job artifacts to prevent
this from happening.
We were using our own versions of isc_uv_{export,import} functions
for multithreaded TCP listeners. Upcoming libuv version will
contain proper uv_{export,import} functions - use them if they're
available.
Upcoming version of libuv will suport uv_recvmmsg and uv_sendmmsg. To
use uv_recvmmsg we need to provide a larger buffer and be able to
properly free it.
isc_task_pause/unpause were inherently thread-unsafe - a task
could be paused only once by one thread, if the task was running
while we paused it it led to races. Fix it by making sure that
the task will pause if requested to, and by using a 'pause reference
counter' to count task pause requests - a task will be unpaused
iff all threads unpause it.
Don't remove from queue when pausing task - we lock the queue lock
(expensive), while it's unlikely that the task will be running -
and we'll remove it anyway in dispatcher
this corrects some style glitches such as:
```
long_function_call(arg, arg2, arg3, arg4, arg5, "str"
"ing");
```
...by adjusting the penalties for breaking strings and call
parameter lists.
While testing BIND 9 on arm64 8+ core machine, it was discovered that
the weak variants in fact does spuriously fail, we haven't observed that
on other architectures.
This commit replaces all non-loop usage of atomic_compare_exchange_weak
with atomic_compare_exchange_strong.
This commit simplifies a bit the lock management within dns_resolver_prime()
and prime_done() functions by means of turning resolver's attribute
"priming" into an atomic_bool and by creating only one dependent object on the
lock "primelock", namely the "primefetch" attribute.
By having the attribute "priming" as an atomic type, it save us from having to
use a lock just to test if priming is on or off for the given resolver context
object, within "dns_resolver_prime" function.
The "primelock" lock is still necessary, since dns_resolver_prime() function
internally calls dns_resolver_createfetch(), and whenever this function
succeeds it registers an event in the task manager which could be called by
another thread, namely the "prime_done" function, and this function is
responsible for disposing the "primefetch" attribute in the resolver object,
also for resetting "priming" attribute to false.
It is important that the invariant "priming == false AND primefetch == NULL"
remains constant, so that any thread calling "dns_resolver_prime" knows for sure
that if the "priming" attribute is false, "primefetch" attribute should also be
NULL, so a new fetch context could be created to fulfill this purpose, and
assigned to "primefetch" attribute under the lock protection.
To honor the explanation above, dns_resolver_prime is implemented as follow:
1. Atomically checks the attribute "priming" for the given resolver context.
2. If "priming" is false, assumes that "primefetch" is NULL (this is
ensured by the "prime_done" implementation), acquire "primelock"
lock and create a new fetch context, update "primefetch" pointer to
point to the newly allocated fetch context.
3. If "priming" is true, assumes that the job is already in progress,
no locks are acquired, nothing else to do.
To keep the previous invariant consistent, "prime_done" is implemented as follow:
1. Acquire "primefetch" lock.
2. Keep a reference to the current "primefetch" object;
3. Reset "primefetch" attribute to NULL.
4. Release "primefetch" lock.
5. Atomically update "priming" attribute to false.
6. Destroy the "primefetch" object by using the temporary reference.
This ensures that if "priming" is false, "primefetch" was already reset to NULL.
It doesn't make any difference in having the "priming" attribute not protected
by a lock, since the visible state of this variable would depend on the calling
order of the functions "dns_resolver_prime" and "prime_done".
As an example, suppose that instead of using an atomic for the "priming" attribute
we employed a lock to protect it.
Now suppose that "prime_done" function is called by Thread A, it is then preempted
before acquiring the lock, thus not reseting "priming" to false.
In parallel to that suppose that a Thread B is scheduled and that it calls
"dns_resolver_prime()", it then acquires the lock and check that "priming" is true,
thus it will consider that this resolver object is already priming and it won't do
any more job.
Conversely if the lock order was acquired in the other direction, Thread B would check
that "priming" is false (since prime_done acquired the lock first and set "priming" to false)
and it would initiate a priming fetch for this resolver.
An atomic variable wouldn't change this behavior, since it would behave exactly the
same, depending on the function call order, with the exception that it would avoid
having to use a lock.
There should be no side effects resulting from this change, since the previous
implementation employed use of the more general resolver's "lock" mutex, which
is used in far more contexts, but in the specifics of the "dns_resolver_prime"
and "prime_done" it was only used to protect "primefetch" and "priming" attributes,
which are not used in any of the other critical sections protected by the same lock,
thus having zero dependency on those variables.