BSD sed does not recognize \s as a whitespace matching token. Make the
sed script in doc/arm/Makefile.in which ensures GitLab identifiers are
not split across lines portable by replacing \s with [[:space:]].
Artifacts generated by the docs:sid:amd64 job need to be retained longer
than for other jobs as they are used for building bind.isc.org contents.
If these artifacts are removed too quickly, pipelines in the pages/bind
GitLab project start failing, preventing content updates from being
published. Increase lifetime of the relevant job artifacts to prevent
this from happening.
We were using our own versions of isc_uv_{export,import} functions
for multithreaded TCP listeners. Upcoming libuv version will
contain proper uv_{export,import} functions - use them if they're
available.
Upcoming version of libuv will suport uv_recvmmsg and uv_sendmmsg. To
use uv_recvmmsg we need to provide a larger buffer and be able to
properly free it.
isc_task_pause/unpause were inherently thread-unsafe - a task
could be paused only once by one thread, if the task was running
while we paused it it led to races. Fix it by making sure that
the task will pause if requested to, and by using a 'pause reference
counter' to count task pause requests - a task will be unpaused
iff all threads unpause it.
Don't remove from queue when pausing task - we lock the queue lock
(expensive), while it's unlikely that the task will be running -
and we'll remove it anyway in dispatcher
this corrects some style glitches such as:
```
long_function_call(arg, arg2, arg3, arg4, arg5, "str"
"ing");
```
...by adjusting the penalties for breaking strings and call
parameter lists.
While testing BIND 9 on arm64 8+ core machine, it was discovered that
the weak variants in fact does spuriously fail, we haven't observed that
on other architectures.
This commit replaces all non-loop usage of atomic_compare_exchange_weak
with atomic_compare_exchange_strong.
This commit simplifies a bit the lock management within dns_resolver_prime()
and prime_done() functions by means of turning resolver's attribute
"priming" into an atomic_bool and by creating only one dependent object on the
lock "primelock", namely the "primefetch" attribute.
By having the attribute "priming" as an atomic type, it save us from having to
use a lock just to test if priming is on or off for the given resolver context
object, within "dns_resolver_prime" function.
The "primelock" lock is still necessary, since dns_resolver_prime() function
internally calls dns_resolver_createfetch(), and whenever this function
succeeds it registers an event in the task manager which could be called by
another thread, namely the "prime_done" function, and this function is
responsible for disposing the "primefetch" attribute in the resolver object,
also for resetting "priming" attribute to false.
It is important that the invariant "priming == false AND primefetch == NULL"
remains constant, so that any thread calling "dns_resolver_prime" knows for sure
that if the "priming" attribute is false, "primefetch" attribute should also be
NULL, so a new fetch context could be created to fulfill this purpose, and
assigned to "primefetch" attribute under the lock protection.
To honor the explanation above, dns_resolver_prime is implemented as follow:
1. Atomically checks the attribute "priming" for the given resolver context.
2. If "priming" is false, assumes that "primefetch" is NULL (this is
ensured by the "prime_done" implementation), acquire "primelock"
lock and create a new fetch context, update "primefetch" pointer to
point to the newly allocated fetch context.
3. If "priming" is true, assumes that the job is already in progress,
no locks are acquired, nothing else to do.
To keep the previous invariant consistent, "prime_done" is implemented as follow:
1. Acquire "primefetch" lock.
2. Keep a reference to the current "primefetch" object;
3. Reset "primefetch" attribute to NULL.
4. Release "primefetch" lock.
5. Atomically update "priming" attribute to false.
6. Destroy the "primefetch" object by using the temporary reference.
This ensures that if "priming" is false, "primefetch" was already reset to NULL.
It doesn't make any difference in having the "priming" attribute not protected
by a lock, since the visible state of this variable would depend on the calling
order of the functions "dns_resolver_prime" and "prime_done".
As an example, suppose that instead of using an atomic for the "priming" attribute
we employed a lock to protect it.
Now suppose that "prime_done" function is called by Thread A, it is then preempted
before acquiring the lock, thus not reseting "priming" to false.
In parallel to that suppose that a Thread B is scheduled and that it calls
"dns_resolver_prime()", it then acquires the lock and check that "priming" is true,
thus it will consider that this resolver object is already priming and it won't do
any more job.
Conversely if the lock order was acquired in the other direction, Thread B would check
that "priming" is false (since prime_done acquired the lock first and set "priming" to false)
and it would initiate a priming fetch for this resolver.
An atomic variable wouldn't change this behavior, since it would behave exactly the
same, depending on the function call order, with the exception that it would avoid
having to use a lock.
There should be no side effects resulting from this change, since the previous
implementation employed use of the more general resolver's "lock" mutex, which
is used in far more contexts, but in the specifics of the "dns_resolver_prime"
and "prime_done" it was only used to protect "primefetch" and "priming" attributes,
which are not used in any of the other critical sections protected by the same lock,
thus having zero dependency on those variables.
- add util/cformat.sh, which runs clang-format on all C files with
the default .clang-format, and on all header files with a slightly
modified version.
- use correct bracing after multi-line control statements
- stop aligning variable declarations to avoid problems with pointer
alignment, but retain aligned declarations in header files so that
struct definitions look cleaner.
- static function prototypes in C files can skip the line break after
the return type, but function prototypes in header files still have
the line break.
- don't break-before-brace in function definitions. ISC style calls
for braces on the same line when function parameters fit on a single
line, and a line break if they don't, but clang-format doesn't yet
support that distinction. one-line function definitions are about
four times more common than multi-line, so let's use the option that
deviates less.
Both clang-tidy and uncrustify chokes on statement like this:
for (...)
if (...)
break;
This commit uses a very simple semantic patch (below) to add braces around such
statements.
Semantic patch used:
@@
statement S;
expression E;
@@
while (...)
- if (E) S
+ { if (E) { S } }
@@
statement S;
expression E;
@@
for (...;...;...)
- if (E) S
+ { if (E) { S } }
@@
statement S;
expression E;
@@
if (...)
- if (E) S
+ { if (E) { S } }
Submissions to Coverity Scan should be limited to those originated from
release branches and only from a specific schedule which holds
COVERITY_SCAN_PROJECT_NAME and COVERITY_SCAN_TOKEN variables.
This job requires two CI variables to be set:
- COVERITY_SCAN_PROJECT_NAME: project name, which is associated with
the BIND branch for which this job is executed, e.g. "bind-master",
- COVERITY_SCAN_TOKEN: project token.