2
0
mirror of https://github.com/checkpoint-restore/criu synced 2025-08-22 09:58:09 +00:00
criu/criu/cr-restore.c

3050 lines
67 KiB
C
Raw Normal View History

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <limits.h>
#include <unistd.h>
#include <errno.h>
#include <dirent.h>
#include <string.h>
#include <fcntl.h>
#include <grp.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <sys/vfs.h>
#include <sys/wait.h>
#include <sys/file.h>
#include <sys/shm.h>
#include <sys/mount.h>
#include <sys/prctl.h>
#include <sched.h>
#include <sys/sendfile.h>
#include "ptrace.h"
#include "compiler.h"
#include "asm/types.h"
#include "asm/restorer.h"
#include "cr_options.h"
#include "servicefd.h"
#include "image.h"
#include "util.h"
#include "util-pie.h"
#include "log.h"
#include "restorer.h"
Unix sockets initial support Currently it can only work with stream sockets, which have no skbs in queues (listening or established -- both work OK). The cpt part uses the sock_diag engine that was merged to Dave recently to collect sockets. Then it dumps sockets by checking the filesystem ID of a failed-to-open through /proc/pid/fd descriptors (sockets do not allow for such tricks with opens through proc) against SOCKFS_TYPE. The rst part is more tricky. Listen sockets are just restored, this is simple. Connected sockets are restored like this: 1. One end establishes a listening anon socket at the desired descriptor; 2. The other end just creates a socket at the desired descriptor; 3. All sockets, that are to be connect()-ed call connect. Unix sockets do not block connect() till the accept() time and thus we continue with... 4. ... all listening sockets call accept() and ... dup2 the new fd into the accepting end. There's a problem with this approach -- socket names are not preserved, but looking into our OpenVZ implementation I think this is OK for existing apps. What should be done next is: 1. Need to merge the file IDs patches in our tree and make Andrey to support files sharing. This will solve the sk = socket(); fork(); case. Currently it simply doesn't work :( 2. Need to add support for DGRAM sockets -- I wrote comment how to do it in the can_dump_unix_sk() 3. Need to add support for in-flight connections 4. Implement support for UDP sockets (quite simple) 5. Implement support for listening TCP sockets (also not very complex) 6. Implement support for connected TCP scokets (hard one, Tejun's patches are not very good for this from my POV) Cyrill, plz, apply this patch and put the above descriptions onto wiki docs (do we have the plans page yet?). Andrey, plz, take care of unix sockets tests in zdtm. Most likely it won't work till you do the shared files support for sockets. Signed-off-by: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
2011-12-26 22:12:03 +04:00
#include "sockets.h"
#include "sk-packet.h"
#include "lock.h"
#include "files.h"
#include "files-reg.h"
#include "pipes.h"
#include "fifo.h"
#include "sk-inet.h"
#include "eventfd.h"
#include "eventpoll.h"
#include "signalfd.h"
#include "proc_parse.h"
#include "restorer-blob.h"
#include "crtools.h"
#include "namespaces.h"
#include "mem.h"
#include "mount.h"
#include "fsnotify.h"
#include "pstree.h"
#include "net.h"
tty: Add checkpoint/restore for unix terminals v6 Usually the PTYs represent a pair of links -- master peer and slave peer. Master peer must be opened before slave. Internally, when kernel creates master peer it also generates a slave interface in a form of /dev/pts/N, where N is that named pty "index". Master/slave connection unambiguously identified by this index. Still, one master can carry multiple slaves -- for example a user opens one master via /dev/ptmx and appropriate /dev/pts/N in sequence. The result will be the following master `- slave 1 `- slave 2 both slave will have same master index but different file descriptors. Still inside the kernel pty parameters are same for both slaves. Thus only one slave parameters should be restored, there is no need to carry all parameters for every slave peer we've found. Not yet addressed problems: - At moment of restore the master peer might be already closed for any reason so to resolve such problem we need to open a fake master peer with proper index and hook a slave on it, then we close master peer. - Need to figure out how to deal with ttys which have some data in buffers not yet flushed, at moment this data will be simply lost during c/r - Need to restore control terminals - Need to fetch tty flags such as exclusive/packet-mode, this can't be done without kernel patching [ avagin@: - ideas on contol terminals restore - overall code redesign and simplification ] v4: - drop redundant pid from dump_chrdev - make sure optional fown is passed on regular ptys - add a comments about zeroifying termios - get rid of redundant empty line in files.c v5 (by avagin@): - complete rework of tty image format, now we have two files -- tty.img and tty-info.img. The idea behind to reduce data being stored. v6 (by xemul@): - packet mode should be set to true in image, until properly fetched from the kernel - verify image data on retrieval Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org> CC: Andrey Vagin <avagin@openvz.org> Signed-off-by: Pavel Emelyanov <xemul@parallels.com>
2012-09-12 20:00:54 +04:00
#include "tty.h"
#include "cpu.h"
#include "file-lock.h"
#include "vdso.h"
#include "stats.h"
#include "tun.h"
#include "vma.h"
#include "kerndat.h"
#include "rst-malloc.h"
#include "plugin.h"
#include "cgroup.h"
#include "timerfd.h"
#include "file-lock.h"
#include "action-scripts.h"
#include "shmem.h"
#include "aio.h"
#include "lsm.h"
#include "seccomp.h"
#include "fault-injection.h"
#include "sk-queue.h"
#include "parasite-syscall.h"
#include "files-reg.h"
#include "protobuf.h"
#include "images/sa.pb-c.h"
#include "images/timer.pb-c.h"
#include "images/vma.pb-c.h"
#include "images/rlimit.pb-c.h"
#include "images/pagemap.pb-c.h"
#include "images/siginfo.pb-c.h"
#include "asm/restore.h"
#include "asm/atomic.h"
#include "asm/bitops.h"
#include "cr-errno.h"
#include "pie/pie-relocs.h"
#ifndef arch_export_restore_thread
#define arch_export_restore_thread __export_restore_thread
#endif
#ifndef arch_export_restore_task
#define arch_export_restore_task __export_restore_task
#endif
#ifndef arch_export_unmap
#define arch_export_unmap __export_unmap
#endif
struct pstree_item *current;
static int restore_task_with_children(void *);
static int sigreturn_restore(pid_t pid, struct task_restore_args *ta, unsigned long alen, CoreEntry *core);
static int prepare_restorer_blob(void);
static int prepare_rlimits(int pid, struct task_restore_args *, CoreEntry *core);
static int prepare_posix_timers(int pid, struct task_restore_args *ta, CoreEntry *core);
static int prepare_signals(int pid, struct task_restore_args *, CoreEntry *core);
static int crtools_prepare_shared(void)
{
if (prepare_shared_fdinfo())
return -1;
/* We might want to remove ghost files on failed restore */
if (collect_remaps_and_regfiles())
return -1;
/* dead pid remap needs to allocate task helpers which all tasks need
* to see */
if (prepare_procfs_remaps())
return -1;
/* Connections are unlocked from criu */
if (collect_inet_sockets())
return -1;
if (collect_binfmt_misc())
return -1;
if (tty_prep_fds())
return -1;
if (prepare_cgroup())
return -1;
return 0;
}
/*
* Collect order information:
* - reg_file should be before remap, as the latter needs
* to find file_desc objects
* - per-pid collects (mm and fd) should be after remap and
* reg_file since both per-pid ones need to get fdesc-s
* and bump counters on remaps if they exist
*/
static struct collect_image_info *cinfos[] = {
&nsfile_cinfo,
&pipe_cinfo,
&fifo_cinfo,
&unix_sk_cinfo,
&packet_sk_cinfo,
&netlink_sk_cinfo,
&eventfd_cinfo,
&epoll_tfd_cinfo,
&epoll_cinfo,
&signalfd_cinfo,
&inotify_cinfo,
&inotify_mark_cinfo,
&fanotify_cinfo,
&fanotify_mark_cinfo,
&tty_info_cinfo,
&tty_cinfo,
&tty_cdata,
&tunfile_cinfo,
&ext_file_cinfo,
&timerfd_cinfo,
&file_locks_cinfo,
&pipe_data_cinfo,
&fifo_data_cinfo,
&sk_queues_cinfo,
};
struct post_prepare_cb {
struct list_head list;
int (*actor)(void *data);
void *data;
};
static struct list_head post_prepare_cbs = LIST_HEAD_INIT(post_prepare_cbs);
int add_post_prepare_cb(int (*actor)(void *data), void *data)
{
struct post_prepare_cb *cb;
cb = xmalloc(sizeof(*cb));
if (!cb)
return -1;
cb->actor = actor;
cb->data = data;
list_add(&cb->list, &post_prepare_cbs);
return 0;
}
static int run_post_prepare(void)
{
struct post_prepare_cb *o;
list_for_each_entry(o, &post_prepare_cbs, list) {
if (o->actor(o->data))
return -1;
}
return 0;
}
static int root_prepare_shared(void)
{
int ret = 0, i;
struct pstree_item *pi;
pr_info("Preparing info about shared resources\n");
if (prepare_shared_tty())
return -1;
if (prepare_shared_reg_files())
return -1;
if (prepare_remaps())
return -1;
if (prepare_seccomp_filters())
return -1;
for (i = 0; i < ARRAY_SIZE(cinfos); i++) {
ret = collect_image(cinfos[i]);
if (ret)
return -1;
}
for_each_pstree_item(pi) {
if (pi->pid.state == TASK_HELPER)
continue;
ret = prepare_mm_pid(pi);
if (ret < 0)
break;
ret = prepare_fd_pid(pi);
if (ret < 0)
break;
ret = prepare_fs_pid(pi);
if (ret < 0)
break;
}
if (ret < 0)
goto err;
ret = prepare_restorer_blob();
if (ret)
goto err;
ret = run_post_prepare();
if (ret)
goto err;
ret = open_transport_socket();
if (ret)
goto err;
show_saved_files();
tty: Add checkpoint/restore for unix terminals v6 Usually the PTYs represent a pair of links -- master peer and slave peer. Master peer must be opened before slave. Internally, when kernel creates master peer it also generates a slave interface in a form of /dev/pts/N, where N is that named pty "index". Master/slave connection unambiguously identified by this index. Still, one master can carry multiple slaves -- for example a user opens one master via /dev/ptmx and appropriate /dev/pts/N in sequence. The result will be the following master `- slave 1 `- slave 2 both slave will have same master index but different file descriptors. Still inside the kernel pty parameters are same for both slaves. Thus only one slave parameters should be restored, there is no need to carry all parameters for every slave peer we've found. Not yet addressed problems: - At moment of restore the master peer might be already closed for any reason so to resolve such problem we need to open a fake master peer with proper index and hook a slave on it, then we close master peer. - Need to figure out how to deal with ttys which have some data in buffers not yet flushed, at moment this data will be simply lost during c/r - Need to restore control terminals - Need to fetch tty flags such as exclusive/packet-mode, this can't be done without kernel patching [ avagin@: - ideas on contol terminals restore - overall code redesign and simplification ] v4: - drop redundant pid from dump_chrdev - make sure optional fown is passed on regular ptys - add a comments about zeroifying termios - get rid of redundant empty line in files.c v5 (by avagin@): - complete rework of tty image format, now we have two files -- tty.img and tty-info.img. The idea behind to reduce data being stored. v6 (by xemul@): - packet mode should be set to true in image, until properly fetched from the kernel - verify image data on retrieval Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org> CC: Andrey Vagin <avagin@openvz.org> Signed-off-by: Pavel Emelyanov <xemul@parallels.com>
2012-09-12 20:00:54 +04:00
err:
return ret;
}
static rt_sigaction_t sigchld_act;
static rt_sigaction_t parent_act[SIGMAX];
static bool sa_inherited(int sig, rt_sigaction_t *sa)
{
rt_sigaction_t *pa;
int i;
if (current == root_item)
return false; /* XXX -- inherit from CRIU? */
pa = &parent_act[sig];
for (i = 0; i < _KNSIG_WORDS; i++)
if (pa->rt_sa_mask.sig[i] != sa->rt_sa_mask.sig[i])
return false;
return pa->rt_sa_handler == sa->rt_sa_handler &&
pa->rt_sa_flags == sa->rt_sa_flags &&
pa->rt_sa_restorer == sa->rt_sa_restorer;
}
/* Returns number of restored signals, -1 or negative errno on fail */
static int restore_one_sigaction(int sig, struct cr_img *img, int pid)
{
rt_sigaction_t act;
SaEntry *e;
int ret = 0;
BUG_ON(sig == SIGKILL || sig == SIGSTOP);
ret = pb_read_one_eof(img, &e, PB_SIGACT);
if (ret == 0) {
if (sig != SIGMAX_OLD + 1) { /* backward compatibility */
pr_err("Unexpected EOF %d\n", sig);
return -1;
}
pr_warn("This format of sigacts-%d.img is deprecated\n", pid);
return -1;
}
if (ret < 0)
return ret;
ASSIGN_TYPED(act.rt_sa_handler, decode_pointer(e->sigaction));
ASSIGN_TYPED(act.rt_sa_flags, e->flags);
ASSIGN_TYPED(act.rt_sa_restorer, decode_pointer(e->restorer));
BUILD_BUG_ON(sizeof(e->mask) != sizeof(act.rt_sa_mask.sig));
memcpy(act.rt_sa_mask.sig, &e->mask, sizeof(act.rt_sa_mask.sig));
sa_entry__free_unpacked(e, NULL);
if (sig == SIGCHLD) {
sigchld_act = act;
return 0;
}
if (sa_inherited(sig - 1, &act))
return 1;
/*
* A pure syscall is used, because glibc
* sigaction overwrites se_restorer.
*/
ret = syscall(SYS_rt_sigaction, sig, &act, NULL, sizeof(k_rtsigset_t));
if (ret < 0) {
pr_perror("Can't restore sigaction");
return ret;
}
parent_act[sig - 1] = act;
return 1;
}
static int prepare_sigactions(void)
{
int pid = current->pid.virt;
struct cr_img *img;
int sig, rst = 0;
int ret = 0;
if (!task_alive(current))
return 0;
pr_info("Restore sigacts for %d\n", pid);
img = open_image(CR_FD_SIGACT, O_RSTR, pid);
if (!img)
return -1;
for (sig = 1; sig <= SIGMAX; sig++) {
if (sig == SIGKILL || sig == SIGSTOP)
continue;
ret = restore_one_sigaction(sig, img, pid);
if (ret < 0)
break;
if (ret)
rst++;
}
pr_info("Restored %d/%d sigacts\n", rst,
SIGMAX - 3 /* KILL, STOP and CHLD */);
close_image(img);
return ret;
}
static int __collect_child_pids(struct pstree_item *p, int state, unsigned int *n)
{
struct pstree_item *pi;
list_for_each_entry(pi, &p->children, sibling) {
pid_t *child;
if (pi->pid.state != state)
continue;
child = rst_mem_alloc(sizeof(*child), RM_PRIVATE);
if (!child)
return -1;
(*n)++;
*child = pi->pid.virt;
}
return 0;
}
static int collect_child_pids(int state, unsigned int *n)
{
struct pstree_item *pi;
*n = 0;
/*
* All children of helpers and zombies will be reparented to the init
* process and they have to be collected too.
*/
if (current == root_item) {
for_each_pstree_item(pi) {
if (pi->pid.state != TASK_HELPER &&
pi->pid.state != TASK_DEAD)
continue;
if (__collect_child_pids(pi, state, n))
return -1;
}
}
return __collect_child_pids(current, state, n);
}
static int collect_helper_pids(struct task_restore_args *ta)
{
ta->helpers = (pid_t *)rst_mem_align_cpos(RM_PRIVATE);
return collect_child_pids(TASK_HELPER, &ta->helpers_n);
}
static int collect_zombie_pids(struct task_restore_args *ta)
{
ta->zombies = (pid_t *)rst_mem_align_cpos(RM_PRIVATE);
return collect_child_pids(TASK_DEAD, &ta->zombies_n);
}
static int open_core(int pid, CoreEntry **pcore)
{
int ret;
struct cr_img *img;
img = open_image(CR_FD_CORE, O_RSTR, pid);
if (!img) {
pr_err("Can't open core data for %d", pid);
return -1;
}
ret = pb_read_one(img, pcore, PB_CORE);
close_image(img);
return ret <= 0 ? -1 : 0;
}
static int open_cores(int pid, CoreEntry *leader_core)
{
int i, tpid;
CoreEntry **cores = NULL;
cores = xmalloc(sizeof(*cores)*current->nr_threads);
if (!cores)
goto err;
for (i = 0; i < current->nr_threads; i++) {
tpid = current->threads[i].virt;
if (tpid == pid)
cores[i] = leader_core;
else if (open_core(tpid, &cores[i]))
goto err;
}
current->core = cores;
return 0;
err:
xfree(cores);
return -1;
}
static int prepare_oom_score_adj(int value)
{
int fd, ret = 0;
char buf[11];
fd = open_proc_rw(PROC_SELF, "oom_score_adj");
if (fd < 0)
return -1;
snprintf(buf, 11, "%d", value);
if (write(fd, buf, 11) < 0) {
pr_perror("Write %s to /proc/self/oom_score_adj failed", buf);
ret = -1;
}
close(fd);
return ret;
}
static int prepare_proc_misc(pid_t pid, TaskCoreEntry *tc)
{
int ret;
/* loginuid value is critical to restore */
if (kdat.has_loginuid && tc->has_loginuid &&
tc->loginuid != INVALID_UID) {
ret = prepare_loginuid(tc->loginuid, LOG_ERROR);
if (ret < 0)
return ret;
}
/* oom_score_adj is not critical: only log errors */
if (tc->has_oom_score_adj && tc->oom_score_adj != 0)
prepare_oom_score_adj(tc->oom_score_adj);
return 0;
}
static int prepare_itimers(int pid, struct task_restore_args *args, CoreEntry *core);
static int prepare_mm(pid_t pid, struct task_restore_args *args);
static int restore_one_alive_task(int pid, CoreEntry *core)
{
unsigned args_len;
struct task_restore_args *ta;
pr_info("Restoring resources\n");
rst_mem_switch_to_private();
args_len = round_up(sizeof(*ta) + sizeof(struct thread_restore_args) *
current->nr_threads, page_size());
ta = mmap(NULL, args_len, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, 0, 0);
if (!ta)
return -1;
memzero(ta, args_len);
if (prepare_fds(current))
return -1;
if (prepare_file_locks(pid))
return -1;
if (open_vmas(current))
return -1;
if (prepare_aios(current, ta))
return -1;
if (fixup_sysv_shmems())
return -1;
if (open_cores(pid, core))
return -1;
if (prepare_signals(pid, ta, core))
return -1;
if (prepare_posix_timers(pid, ta, core))
return -1;
if (prepare_rlimits(pid, ta, core) < 0)
return -1;
if (collect_helper_pids(ta) < 0)
return -1;
if (collect_zombie_pids(ta) < 0)
return -1;
Add inherit fd support There are cases where a process's file descriptor cannot be restored from the checkpoint images. For example, a pipe file descriptor with one end in the checkpointed process and the other end in a separate process (that was not part of the checkpointed process tree) cannot be restored because after checkpoint the pipe will be broken. There are also cases where the user wants to use a new file during restore instead of the original file at checkpoint time. For example, the user wants to change the log file of a process from /path/to/oldlog to /path/to/newlog. In these cases, criu's caller should set up a new file descriptor to be inherited by the restored process and specify the file descriptor with the --inherit-fd command line option. The argument of --inherit-fd has the format fd[%d]:%s, where %d tells criu which of its own file descriptors to use for restoring the file identified by %s. As a debugging aid, if the argument has the format debug[%d]:%s, it tells criu to write out the string after colon to the file descriptor %d. This can be used, for example, as an easy way to leave a "restore marker" in the output stream of the process. It's important to note that inherit fd support breaks applications that depend on the state of the file descriptor being inherited. So, consider inherit fd only for specific use cases that you know for sure won't break the application. For examples please visit http://criu.org/Category:HOWTO. v2: Added a check in send_fd_to_self() to avoid closing an inherit fd. Also, as an extra measure of caution, added checks in the inherit fd look up functions to make sure that the inherit fd hasn't been reused. The patch also includes minor cosmetic changes. Signed-off-by: Saied Kazemi <saied@google.com> Signed-off-by: Pavel Emelyanov <xemul@parallels.com>
2014-12-09 23:20:00 +03:00
if (inherit_fd_fini() < 0)
return -1;
if (prepare_proc_misc(pid, core->tc))
return -1;
/*
* Get all the tcp sockets fds into rst memory -- restorer
* will turn repair off before going sigreturn
*/
if (prepare_tcp_socks(ta))
return -1;
/*
* Copy timerfd params for restorer args, we need to proceed
* timer setting at the very late.
*/
if (prepare_timerfds(ta))
return -1;
if (seccomp_filters_get_rst_pos(core, ta) < 0)
return -1;
if (prepare_itimers(pid, ta, core) < 0)
return -1;
if (prepare_mm(pid, ta))
return -1;
if (prepare_vmas(current, ta))
return -1;
close_service_fd(TRANSPORT_FD_OFF);
return sigreturn_restore(pid, ta, args_len, core);
}
static void zombie_prepare_signals(void)
{
sigset_t blockmask;
int sig;
struct sigaction act;
sigfillset(&blockmask);
sigprocmask(SIG_UNBLOCK, &blockmask, NULL);
memset(&act, 0, sizeof(act));
act.sa_handler = SIG_DFL;
for (sig = 1; sig <= SIGMAX; sig++)
sigaction(sig, &act, NULL);
}
#define SIG_FATAL_MASK ( \
(1 << SIGHUP) |\
(1 << SIGINT) |\
(1 << SIGQUIT) |\
(1 << SIGILL) |\
(1 << SIGTRAP) |\
(1 << SIGABRT) |\
(1 << SIGIOT) |\
(1 << SIGBUS) |\
(1 << SIGFPE) |\
(1 << SIGKILL) |\
(1 << SIGUSR1) |\
(1 << SIGSEGV) |\
(1 << SIGUSR2) |\
(1 << SIGPIPE) |\
(1 << SIGALRM) |\
(1 << SIGTERM) |\
(1 << SIGXCPU) |\
(1 << SIGXFSZ) |\
(1 << SIGVTALRM)|\
(1 << SIGPROF) |\
(1 << SIGPOLL) |\
(1 << SIGIO) |\
(1 << SIGSYS) |\
(1 << SIGUNUSED)|\
(1 << SIGSTKFLT)|\
(1 << SIGPWR) \
)
static inline int sig_fatal(int sig)
{
return (sig > 0) && (sig < SIGMAX) && (SIG_FATAL_MASK & (1UL << sig));
}
struct task_entries *task_entries;
static unsigned long task_entries_pos;
static int wait_on_helpers_zombies(void)
{
struct pstree_item *pi;
list_for_each_entry(pi, &current->children, sibling) {
pid_t pid = pi->pid.virt;
int status;
switch (pi->pid.state) {
case TASK_DEAD:
if (waitid(P_PID, pid, NULL, WNOWAIT | WEXITED) < 0) {
pr_perror("Wait on %d zombie failed", pid);
return -1;
}
break;
case TASK_HELPER:
if (waitpid(pid, &status, 0) != pid) {
pr_perror("waitpid for helper %d failed", pid);
return -1;
}
break;
}
}
return 0;
}
static int restore_one_zombie(CoreEntry *core)
{
int exit_code = core->tc->exit_code;
pr_info("Restoring zombie with %d code\n", exit_code);
Add inherit fd support There are cases where a process's file descriptor cannot be restored from the checkpoint images. For example, a pipe file descriptor with one end in the checkpointed process and the other end in a separate process (that was not part of the checkpointed process tree) cannot be restored because after checkpoint the pipe will be broken. There are also cases where the user wants to use a new file during restore instead of the original file at checkpoint time. For example, the user wants to change the log file of a process from /path/to/oldlog to /path/to/newlog. In these cases, criu's caller should set up a new file descriptor to be inherited by the restored process and specify the file descriptor with the --inherit-fd command line option. The argument of --inherit-fd has the format fd[%d]:%s, where %d tells criu which of its own file descriptors to use for restoring the file identified by %s. As a debugging aid, if the argument has the format debug[%d]:%s, it tells criu to write out the string after colon to the file descriptor %d. This can be used, for example, as an easy way to leave a "restore marker" in the output stream of the process. It's important to note that inherit fd support breaks applications that depend on the state of the file descriptor being inherited. So, consider inherit fd only for specific use cases that you know for sure won't break the application. For examples please visit http://criu.org/Category:HOWTO. v2: Added a check in send_fd_to_self() to avoid closing an inherit fd. Also, as an extra measure of caution, added checks in the inherit fd look up functions to make sure that the inherit fd hasn't been reused. The patch also includes minor cosmetic changes. Signed-off-by: Saied Kazemi <saied@google.com> Signed-off-by: Pavel Emelyanov <xemul@parallels.com>
2014-12-09 23:20:00 +03:00
if (inherit_fd_fini() < 0)
return -1;
prctl(PR_SET_NAME, (long)(void *)core->tc->comm, 0, 0, 0);
if (task_entries != NULL) {
restore_finish_stage(task_entries, CR_STATE_RESTORE);
zombie_prepare_signals();
}
if (exit_code & 0x7f) {
int signr;
/* prevent generating core files */
if (prctl(PR_SET_DUMPABLE, 0, 0, 0, 0))
pr_perror("Can't drop the dumpable flag");
signr = exit_code & 0x7F;
if (!sig_fatal(signr)) {
pr_warn("Exit with non fatal signal ignored\n");
signr = SIGABRT;
}
if (kill(current->pid.virt, signr) < 0)
pr_perror("Can't kill myself, will just exit");
exit_code = 0;
}
exit((exit_code >> 8) & 0x7f);
/* never reached */
BUG_ON(1);
return -1;
}
static int check_core(CoreEntry *core, struct pstree_item *me)
{
int ret = -1;
if (core->mtype != CORE_ENTRY__MARCH) {
pr_err("Core march mismatch %d\n", (int)core->mtype);
goto out;
}
if (!core->tc) {
pr_err("Core task state data missed\n");
goto out;
}
if (core->tc->task_state != TASK_DEAD) {
if (!core->ids && !me->ids) {
pr_err("Core IDS data missed for non-zombie\n");
goto out;
}
if (!CORE_THREAD_ARCH_INFO(core)) {
pr_err("Core info data missed for non-zombie\n");
goto out;
}
}
ret = 0;
out:
return ret;
}
static int restore_one_task(int pid, CoreEntry *core)
{
int ret;
/* No more fork()-s => no more per-pid logs */
if (task_alive(current))
ret = restore_one_alive_task(pid, core);
else if (current->pid.state == TASK_DEAD)
ret = restore_one_zombie(core);
else if (current->pid.state == TASK_HELPER) {
sigset_t blockmask, oldmask;
sigemptyset(&blockmask);
sigaddset(&blockmask, SIGCHLD);
if (sigprocmask(SIG_BLOCK, &blockmask, &oldmask) == -1) {
pr_perror("Can not set mask of blocked signals");
return -1;
}
restore_finish_stage(task_entries, CR_STATE_RESTORE);
if (wait_on_helpers_zombies()) {
pr_err("failed to wait on helpers and zombies\n");
ret = -1;
} else {
ret = 0;
}
} else {
pr_err("Unknown state in code %d\n", (int)core->tc->task_state);
ret = -1;
}
if (core)
core_entry__free_unpacked(core, NULL);
return ret;
}
/* All arguments should be above stack, because it grows down */
struct cr_clone_arg {
/*
* Reserve some space for clone() to locate arguments
* and retcode in this place
*/
char stack[128] __stack_aligned__;
char stack_ptr[0];
struct pstree_item *item;
unsigned long clone_flags;
int fd;
CoreEntry *core;
};
static void maybe_clone_parent(struct pstree_item *item,
struct cr_clone_arg *ca)
{
/*
* zdtm runs in kernel 3.11, which has the problem described below. We
* avoid this by including the pdeath_sig test. Once users/zdtm migrate
* off of 3.11, this condition can be simplified to just test the
* options and not have the pdeath_sig test.
*/
restore: Introduce the --restore-sibling option We have a slight mess with how criu restores root task. Right now we have the following options. 1) CLI a) Usually task calling criu `- criu `- root restored task b) when --restore-detached AND root has pdeath_sig task calling criu `- criu `- root restored task 2) Library/SWRK task using lib/swrk `- criu `- root restored task 3) Standalone service a) Usually service `- service sub task `- root restored task b) when root has pdeath_sig criu service `- criu sub task `- root restored task It would be better is CRIU always restored the root task as sibling, but we have 3 constraints: First, the case 1.a is kept for zdtm to run tests in pid namespaces on 3.11, which in turn doesn't allow CLONE_PARENT | CLONE_NEWPID. Second, CLI w/o --restore-detach waits for the restored task to die and this behavior can be "expected" already. Third, in case of standalone service tasks shouldn't become service's children. And I have one "plan". The p.haul project while live migrating tasks on destination node starts a service, which uses library/swrk mode. In this case the restored processes become p.haul service's kids which is also not great. That said, here's the option called --restore-child that pairs the --restore-detach like this: * detached AND child: task `- criu restore (exits at the end) `- root task The root task will become task's child. This will be default to library/swrk. This is what LXC needs. * detach AND !child task `- criu restore (exits at the end) `- root task The root task will get re-parented to init. This will be compatible with 1.3. This will be default to standalone service and to my wish with the p.haul case. * !detach AND child task `- criu restore (waits for root task to die) `- root task This should be deprecated, so that criu restore doesn't mess with task <-> root task signalling. * !detach AND !child task `- criu restore (waits for root task to die) `- root task This is how plain criu restore works now. Signed-off-by: Pavel Emelyanov <xemul@parallels.com> Acked-by: Tycho Andersen <tycho.andersen@canonical.com> Acked-by: Andrew Vagin <avagin@openvz.org>
2014-09-10 15:46:06 +04:00
if (opts.restore_sibling) {
/*
* This means we're called from lib's criu_restore_child().
* In that case create the root task as the child one to+
* the caller. This is the only way to correctly restore the
* pdeath_sig of the root task. But also looks nice.
*
* Alternatively, if we are --restore-detached, a similar trick is
* needed to correctly restore pdeath_sig and prevent processes from
* dying once restored.
*
* There were a problem in kernel 3.11 -- CLONE_PARENT can't be
* set together with CLONE_NEWPID, which has been solved in further
* versions of the kernels, but we treat 3.11 as a base, so at
* least warn a user about potential problems.
*/
rsti(item)->clone_flags |= CLONE_PARENT;
if (rsti(item)->clone_flags & CLONE_NEWPID)
pr_warn("Set CLONE_PARENT | CLONE_NEWPID but it might cause restore problem,"
"because not all kernels support such clone flags combinations!\n");
restore: Introduce the --restore-sibling option We have a slight mess with how criu restores root task. Right now we have the following options. 1) CLI a) Usually task calling criu `- criu `- root restored task b) when --restore-detached AND root has pdeath_sig task calling criu `- criu `- root restored task 2) Library/SWRK task using lib/swrk `- criu `- root restored task 3) Standalone service a) Usually service `- service sub task `- root restored task b) when root has pdeath_sig criu service `- criu sub task `- root restored task It would be better is CRIU always restored the root task as sibling, but we have 3 constraints: First, the case 1.a is kept for zdtm to run tests in pid namespaces on 3.11, which in turn doesn't allow CLONE_PARENT | CLONE_NEWPID. Second, CLI w/o --restore-detach waits for the restored task to die and this behavior can be "expected" already. Third, in case of standalone service tasks shouldn't become service's children. And I have one "plan". The p.haul project while live migrating tasks on destination node starts a service, which uses library/swrk mode. In this case the restored processes become p.haul service's kids which is also not great. That said, here's the option called --restore-child that pairs the --restore-detach like this: * detached AND child: task `- criu restore (exits at the end) `- root task The root task will become task's child. This will be default to library/swrk. This is what LXC needs. * detach AND !child task `- criu restore (exits at the end) `- root task The root task will get re-parented to init. This will be compatible with 1.3. This will be default to standalone service and to my wish with the p.haul case. * !detach AND child task `- criu restore (waits for root task to die) `- root task This should be deprecated, so that criu restore doesn't mess with task <-> root task signalling. * !detach AND !child task `- criu restore (waits for root task to die) `- root task This is how plain criu restore works now. Signed-off-by: Pavel Emelyanov <xemul@parallels.com> Acked-by: Tycho Andersen <tycho.andersen@canonical.com> Acked-by: Andrew Vagin <avagin@openvz.org>
2014-09-10 15:46:06 +04:00
} else if (opts.restore_detach) {
if (ca->core->thread_core->pdeath_sig)
pr_warn("Root task has pdeath_sig configured, so it will receive one _right_"
"after restore on CRIU exit\n");
}
}
static inline int fork_with_pid(struct pstree_item *item)
{
struct cr_clone_arg ca;
int ret = -1;
pid_t pid = item->pid.virt;
if (item->pid.state != TASK_HELPER) {
if (open_core(pid, &ca.core))
return -1;
if (check_core(ca.core, item))
return -1;
item->pid.state = ca.core->tc->task_state;
rsti(item)->cg_set = ca.core->tc->cg_set;
rsti(item)->has_seccomp = ca.core->tc->seccomp_mode != SECCOMP_MODE_DISABLED;
if (item->pid.state != TASK_DEAD && !task_alive(item)) {
pr_err("Unknown task state %d\n", item->pid.state);
return -1;
}
if (unlikely(item == root_item))
maybe_clone_parent(item, &ca);
} else {
/*
* Helper entry will not get moved around and thus
* will live in the parent's cgset.
*/
rsti(item)->cg_set = rsti(item->parent)->cg_set;
ca.core = NULL;
}
ret = -1;
ca.item = item;
ca.clone_flags = rsti(item)->clone_flags;
BUG_ON(ca.clone_flags & CLONE_VM);
pr_info("Forking task with %d pid (flags 0x%lx)\n", pid, ca.clone_flags);
if (!(ca.clone_flags & CLONE_NEWPID)) {
char buf[32];
int len;
ca.fd = open_proc_rw(PROC_GEN, LAST_PID_PATH);
if (ca.fd < 0) {
pr_perror("%d: Can't open %s", pid, LAST_PID_PATH);
goto err;
}
if (flock(ca.fd, LOCK_EX)) {
close(ca.fd);
pr_perror("%d: Can't lock %s", pid, LAST_PID_PATH);
goto err;
}
len = snprintf(buf, sizeof(buf), "%d", pid - 1);
if (write(ca.fd, buf, len) != len) {
pr_perror("%d: Write %s to %s", pid, buf, LAST_PID_PATH);
goto err_unlock;
}
} else {
ca.fd = -1;
BUG_ON(pid != INIT_PID);
}
/*
* Some kernel modules, such as netwrok packet generator
* run kernel thread upon net-namespace creattion taking
* the @pid we've been requeting via LAST_PID_PATH interface
* so that we can't restore a take with pid needed.
*
* Here is an idea -- unhare net namespace in callee instead.
*/
/*
* The cgroup namespace is also unshared explicitly in the
* move_in_cgroup(), so drop this flag here as well.
*/
ret = clone(restore_task_with_children, ca.stack_ptr,
(ca.clone_flags & ~(CLONE_NEWNET | CLONE_NEWCGROUP)) | SIGCHLD, &ca);
if (ret < 0) {
pr_perror("Can't fork for %d", pid);
goto err_unlock;
}
if (item == root_item) {
item->pid.real = ret;
pr_debug("PID: real %d virt %d\n",
item->pid.real, item->pid.virt);
}
err_unlock:
if (ca.fd >= 0) {
if (flock(ca.fd, LOCK_UN))
pr_perror("%d: Can't unlock %s", pid, LAST_PID_PATH);
close(ca.fd);
}
err:
if (ca.core)
core_entry__free_unpacked(ca.core, NULL);
return ret;
}
static void sigchld_handler(int signal, siginfo_t *siginfo, void *data)
{
struct pstree_item *pi;
pid_t pid = siginfo->si_pid;
int status;
int exit;
exit = (siginfo->si_code == CLD_EXITED);
status = siginfo->si_status;
/* skip scripts */
if (!current && root_item->pid.real != pid) {
pid = waitpid(root_item->pid.real, &status, WNOHANG);
if (pid <= 0)
return;
exit = WIFEXITED(status);
status = exit ? WEXITSTATUS(status) : WTERMSIG(status);
}
if (!current && siginfo->si_code == CLD_TRAPPED &&
siginfo->si_status == SIGCHLD) {
/* The root task is ptraced. Allow it to handle SIGCHLD */
ptrace(PTRACE_CONT, siginfo->si_pid, 0, SIGCHLD);
return;
}
if (!current || status)
goto err;
while (pid) {
pid = waitpid(-1, &status, WNOHANG);
if (pid <= 0)
return;
exit = WIFEXITED(status);
status = exit ? WEXITSTATUS(status) : WTERMSIG(status);
if (status)
break;
/* Exited (with zero code) helpers are OK */
list_for_each_entry(pi, &current->children, sibling)
if (pi->pid.virt == siginfo->si_pid)
break;
BUG_ON(&pi->sibling == &current->children);
if (pi->pid.state != TASK_HELPER)
break;
}
err:
if (exit)
pr_err("%d exited, status=%d\n", pid, status);
else
pr_err("%d killed by signal %d: %s\n",
pid, status, strsignal(status));
futex_abort_and_wake(&task_entries->nr_in_progress);
}
static int criu_signals_setup(void)
{
int ret;
struct sigaction act;
sigset_t blockmask;
ret = sigaction(SIGCHLD, NULL, &act);
if (ret < 0) {
pr_perror("sigaction() failed");
return -1;
}
act.sa_flags |= SA_NOCLDSTOP | SA_SIGINFO | SA_RESTART;
act.sa_sigaction = sigchld_handler;
sigemptyset(&act.sa_mask);
sigaddset(&act.sa_mask, SIGCHLD);
ret = sigaction(SIGCHLD, &act, NULL);
if (ret < 0) {
pr_perror("sigaction() failed");
return -1;
}
/*
* The block mask will be restored in sigreturn.
*
* TODO: This code should be removed, when a freezer will be added.
*/
sigfillset(&blockmask);
sigdelset(&blockmask, SIGCHLD);
/*
* Here we use SIG_SETMASK instead of SIG_BLOCK to avoid the case where
* we've been forked from a parent who had blocked SIGCHLD. If SIGCHLD
* is blocked when a task dies (e.g. if the task fails to restore
* somehow), we hang because our SIGCHLD handler is never run. Since we
* depend on SIGCHLD being unblocked, let's set the mask explicitly.
*/
ret = sigprocmask(SIG_SETMASK, &blockmask, NULL);
if (ret < 0) {
pr_perror("Can't block signals");
return -1;
}
return 0;
}
static void restore_sid(void)
{
pid_t sid;
/*
* SID can only be reset to pid or inherited from parent.
* Thus we restore it right here to let our kids inherit
* one in case they need it.
*
* PGIDs are restored late when all tasks are forked and
* we can call setpgid() on custom values.
*/
if (current->pid.virt == current->sid) {
pr_info("Restoring %d to %d sid\n", current->pid.virt, current->sid);
sid = setsid();
if (sid != current->sid) {
pr_perror("Can't restore sid (%d)", sid);
exit(1);
}
} else {
sid = getsid(getpid());
if (sid != current->sid) {
/* Skip the root task if it's not init */
if (current == root_item && root_item->pid.virt != INIT_PID)
return;
pr_err("Requested sid %d doesn't match inherited %d\n",
current->sid, sid);
exit(1);
}
}
}
static void restore_pgid(void)
{
/*
* Unlike sessions, process groups (a.k.a. pgids) can be joined
* by any task, provided the task with pid == pgid (group leader)
* exists. Thus, in order to restore pgid we must make sure that
* group leader was born and created the group, then join one.
*
* We do this _before_ finishing the forking stage to make sure
* helpers are still with us.
*/
pid_t pgid, my_pgid = current->pgid;
pr_info("Restoring %d to %d pgid\n", current->pid.virt, my_pgid);
pgid = getpgrp();
if (my_pgid == pgid)
return;
if (my_pgid != current->pid.virt) {
struct pstree_item *leader;
/*
* Wait for leader to become such.
* Missing leader means we're going to crtools
* group (-j option).
*/
leader = rsti(current)->pgrp_leader;
if (leader) {
BUG_ON(my_pgid != leader->pid.virt);
futex_wait_until(&rsti(leader)->pgrp_set, 1);
}
}
pr_info("\twill call setpgid, mine pgid is %d\n", pgid);
if (setpgid(0, my_pgid) != 0) {
pr_perror("Can't restore pgid (%d/%d->%d)", current->pid.virt, pgid, current->pgid);
exit(1);
}
if (my_pgid == current->pid.virt)
futex_set_and_wake(&rsti(current)->pgrp_set, 1);
}
static int mount_proc(void)
{
int fd, ret;
char proc_mountpoint[] = "crtools-proc.XXXXXX";
if (mkdtemp(proc_mountpoint) == NULL) {
pr_perror("mkdtemp failed %s", proc_mountpoint);
return -1;
}
pr_info("Mount procfs in %s\n", proc_mountpoint);
if (mount("proc", proc_mountpoint, "proc", MS_MGC_VAL | MS_NOSUID | MS_NOEXEC | MS_NODEV, NULL)) {
pr_perror("mount failed");
rmdir(proc_mountpoint);
return -1;
}
ret = fd = open_detach_mount(proc_mountpoint);
if (fd >= 0) {
ret = set_proc_fd(fd);
close(fd);
}
return ret;
}
/*
* Tasks cannot change sid (session id) arbitrary, but can either
* inherit one from ancestor, or create a new one with id equal to
* their pid. Thus sid-s restore is tied with children creation.
*/
static int create_children_and_session(void)
{
int ret;
struct pstree_item *child;
pr_info("Restoring children in alien sessions:\n");
list_for_each_entry(child, &current->children, sibling) {
if (!restore_before_setsid(child))
continue;
BUG_ON(child->born_sid != -1 && getsid(getpid()) != child->born_sid);
ret = fork_with_pid(child);
if (ret < 0)
return ret;
}
if (current->parent)
restore_sid();
pr_info("Restoring children in our session:\n");
list_for_each_entry(child, &current->children, sibling) {
if (restore_before_setsid(child))
continue;
ret = fork_with_pid(child);
if (ret < 0)
return ret;
}
return 0;
}
static int restore_task_with_children(void *_arg)
{
struct cr_clone_arg *ca = _arg;
pid_t pid;
int ret;
current = ca->item;
if (current != root_item) {
char buf[12];
int fd;
/* Determine PID in CRIU's namespace */
fd = get_service_fd(CR_PROC_FD_OFF);
if (fd < 0)
goto err;
ret = readlinkat(fd, "self", buf, sizeof(buf) - 1);
if (ret < 0) {
pr_perror("Unable to read the /proc/self link");
goto err;
}
buf[ret] = '\0';
current->pid.real = atoi(buf);
pr_debug("PID: real %d virt %d\n",
current->pid.real, current->pid.virt);
}
if ( !(ca->clone_flags & CLONE_FILES))
close_safe(&ca->fd);
if (current->pid.state != TASK_HELPER) {
ret = clone_service_fd(rsti(current)->service_fd_id);
if (ret)
goto err;
}
pid = getpid();
if (current->pid.virt != pid) {
pr_err("Pid %d do not match expected %d\n", pid, current->pid.virt);
set_task_cr_err(EEXIST);
goto err;
}
ret = log_init_by_pid();
if (ret < 0)
goto err;
if (ca->clone_flags & CLONE_NEWNET) {
ret = unshare(CLONE_NEWNET);
if (ret) {
pr_perror("Can't unshare net-namespace");
goto err;
}
}
if (!(ca->clone_flags & CLONE_FILES)) {
ret = close_old_fds();
if (ret)
goto err;
}
/* Wait prepare_userns */
if (current->parent == NULL &&
restore_finish_stage(task_entries, CR_STATE_RESTORE_NS) < 0)
goto err;
/*
* Call this _before_ forking to optimize cgroups
* restore -- if all tasks live in one set of cgroups
* we will only move the root one there, others will
* just have it inherited.
*/
if (prepare_task_cgroup(current) < 0)
goto err;
/* Restore root task */
if (current->parent == NULL) {
if (join_namespaces()) {
pr_perror("Join namespaces failed");
goto err;
}
pr_info("Calling restore_sid() for init\n");
restore_sid();
/*
* We need non /proc proc mount for restoring pid and mount
* namespaces and do not care for the rest of the cases.
* Thus -- mount proc at custom location for any new namespace
*/
if (mount_proc())
goto err;
if (prepare_namespace(current, ca->clone_flags))
goto err;
if (root_prepare_shared())
goto err;
if (restore_finish_stage(task_entries, CR_STATE_RESTORE_SHARED) < 0)
goto err;
}
if (restore_task_mnt_ns(current))
goto err;
if (prepare_mappings(current))
goto err;
if (prepare_sigactions() < 0)
goto err;
if (fault_injected(FI_RESTORE_ROOT_ONLY)) {
pr_info("fault: Restore root task failure!\n");
BUG();
}
if (create_children_and_session())
goto err;
if (unmap_guard_pages(current))
goto err;
restore_pgid();
if (current->parent == NULL) {
/*
* Wait when all tasks passed the CR_STATE_FORKING stage.
* It means that all tasks entered into their namespaces.
*/
futex_wait_while_gt(&task_entries->nr_in_progress, 1);
fini_restore_mntns();
}
if (restore_finish_stage(task_entries, CR_STATE_FORKING) < 0)
goto err;
if (restore_one_task(current->pid.virt, ca->core))
goto err;
return 0;
err:
if (current->parent == NULL)
futex_abort_and_wake(&task_entries->nr_in_progress);
exit(1);
}
static inline int stage_participants(int next_stage)
{
switch (next_stage) {
case CR_STATE_FAIL:
return 0;
case CR_STATE_RESTORE_NS:
case CR_STATE_RESTORE_SHARED:
return 1;
case CR_STATE_FORKING:
return task_entries->nr_tasks + task_entries->nr_helpers;
case CR_STATE_RESTORE:
return task_entries->nr_threads + task_entries->nr_helpers;
case CR_STATE_RESTORE_SIGCHLD:
return task_entries->nr_threads;
case CR_STATE_RESTORE_CREDS:
return task_entries->nr_threads;
}
BUG();
return -1;
}
static int restore_wait_inprogress_tasks()
{
int ret;
futex_t *np = &task_entries->nr_in_progress;
futex_wait_while_gt(np, 0);
ret = (int)futex_get(np);
if (ret < 0) {
set_cr_errno(get_task_cr_err());
return ret;
}
return 0;
}
static void __restore_switch_stage(int next_stage)
{
futex_set(&task_entries->nr_in_progress,
stage_participants(next_stage));
futex_set_and_wake(&task_entries->start, next_stage);
}
static int restore_switch_stage(int next_stage)
{
__restore_switch_stage(next_stage);
return restore_wait_inprogress_tasks();
}
static int attach_to_tasks(bool root_seized)
{
struct pstree_item *item;
for_each_pstree_item(item) {
int status, i;
if (!task_alive(item))
continue;
if (parse_threads(item->pid.real, &item->threads, &item->nr_threads))
return -1;
for (i = 0; i < item->nr_threads; i++) {
pid_t pid = item->threads[i].real;
if (item != root_item || !root_seized || i != 0) {
if (ptrace(PTRACE_SEIZE, pid, 0, 0)) {
pr_perror("Can't attach to %d", pid);
return -1;
}
}
if (ptrace(PTRACE_INTERRUPT, pid, 0, 0)) {
pr_perror("Can't interrupt the %d task", pid);
return -1;
}
if (wait4(pid, &status, __WALL, NULL) != pid) {
pr_perror("waitpid(%d) failed", pid);
return -1;
}
/*
* Suspend seccomp if necessary. We need to do this because
* although seccomp is restored at the very end of the
* restorer blob (and the final sigreturn is ok), here we're
* doing an munmap in the process, which may be blocked by
* seccomp and cause the task to be killed.
*/
if (rsti(item)->has_seccomp && suspend_seccomp(pid) < 0)
pr_err("failed to suspend seccomp, restore will probably fail...\n");
if (ptrace(PTRACE_CONT, pid, NULL, NULL) ) {
pr_perror("Unable to resume %d", pid);
return -1;
}
}
}
return 0;
}
static int catch_tasks(bool root_seized, enum trace_flags *flag)
{
struct pstree_item *item;
for_each_pstree_item(item) {
int status, i, ret;
if (!task_alive(item))
continue;
if (parse_threads(item->pid.real, &item->threads, &item->nr_threads))
return -1;
for (i = 0; i < item->nr_threads; i++) {
pid_t pid = item->threads[i].real;
if (ptrace(PTRACE_INTERRUPT, pid, 0, 0)) {
pr_perror("Can't interrupt the %d task", pid);
return -1;
}
if (wait4(pid, &status, __WALL, NULL) != pid) {
pr_perror("waitpid(%d) failed", pid);
return -1;
}
ret = ptrace_stop_pie(pid, rsti(item)->breakpoint, flag);
if (ret < 0)
return -1;
}
}
return 0;
}
static int clear_breakpoints()
{
struct pstree_item *item;
int ret = 0, i;
if (fault_injected(FI_NO_BREAKPOINTS))
return 0;
for_each_pstree_item(item) {
if (!task_alive(item))
continue;
for (i = 0; i < item->nr_threads; i++)
ret |= ptrace_flush_breakpoints(item->threads[i].real);
}
return ret;
}
static void finalize_restore(void)
{
struct pstree_item *item;
for_each_pstree_item(item) {
pid_t pid = item->pid.real;
struct parasite_ctl *ctl;
if (!task_alive(item))
continue;
/* Unmap the restorer blob */
ctl = parasite_prep_ctl(pid, NULL);
if (ctl == NULL)
continue;
parasite_unmap(ctl, (unsigned long)rsti(item)->munmap_restorer);
xfree(ctl);
if ((item->pid.state == TASK_STOPPED) ||
(opts.final_state == TASK_STOPPED))
kill(item->pid.real, SIGSTOP);
}
}
static void finalize_restore_detach(int status)
{
struct pstree_item *item;
for_each_pstree_item(item) {
pid_t pid;
int i;
if (!task_alive(item))
continue;
for (i = 0; i < item->nr_threads; i++) {
pid = item->threads[i].real;
if (pid < 0) {
BUG_ON(status >= 0);
break;
}
if (ptrace(PTRACE_DETACH, pid, NULL, 0))
pr_perror("Unable to execute %d", pid);
}
}
}
static void ignore_kids(void)
{
struct sigaction sa = { .sa_handler = SIG_DFL };
if (sigaction(SIGCHLD, &sa, NULL) < 0)
pr_perror("Restoring CHLD sigaction failed");
}
static unsigned int saved_loginuid;
static int prepare_userns_hook(void)
{
int ret;
if (!kdat.has_loginuid)
return 0;
/*
* Save old loginuid and set it to INVALID_UID:
* this value means that loginuid is unset and it will be inherited.
* After you set some value to /proc/<>/loginuid it can't be changed
* inside container due to permissions.
* But you still can set this value if it was unset.
*/
saved_loginuid = parse_pid_loginuid(getpid(), &ret, false);
if (ret < 0)
return -1;
if (prepare_loginuid(INVALID_UID, LOG_ERROR) < 0) {
pr_err("Setting loginuid for CT init task failed, CAP_AUDIT_CONTROL?");
return -1;
}
return 0;
}
static void restore_origin_ns_hook(void)
{
if (!kdat.has_loginuid)
return;
/* not critical: it does not affect CT in any way */
if (prepare_loginuid(saved_loginuid, LOG_ERROR) < 0)
pr_err("Restore original /proc/self/loginuid failed");
}
static int write_restored_pid(void)
{
int pid;
if (!opts.pidfile)
return 0;
pid = root_item->pid.real;
if (write_pidfile(pid) < 0) {
pr_perror("Can't write pidfile");
return -1;
}
return 0;
}
static int restore_root_task(struct pstree_item *init)
{
enum trace_flags flag = TRACE_ALL;
int ret, fd, mnt_ns_fd = -1;
int clean_remaps = 1, root_seized = 0;
struct pstree_item *item;
ret = run_scripts(ACT_PRE_RESTORE);
if (ret != 0) {
pr_err("Aborting restore due to pre-restore script ret code %d\n", ret);
return -1;
}
fd = open("/proc", O_DIRECTORY | O_RDONLY);
if (fd < 0) {
pr_perror("Unable to open /proc");
return -1;
}
ret = install_service_fd(CR_PROC_FD_OFF, fd);
close(fd);
if (ret < 0)
return -1;
/*
* FIXME -- currently we assume that all the tasks live
* in the same set of namespaces. This is done to debug
* the ns contents dumping/restoring. Need to revisit
* this later.
*/
if (init->pid.virt == INIT_PID) {
if (!(root_ns_mask & CLONE_NEWPID)) {
pr_err("This process tree can only be restored "
"in a new pid namespace.\n"
"criu should be re-executed with the "
"\"--namespace pid\" option.\n");
return -1;
}
} else if (root_ns_mask & CLONE_NEWPID) {
pr_err("Can't restore pid namespace without the process init\n");
return -1;
}
if (prepare_userns_hook())
return -1;
if (prepare_namespace_before_tasks())
usernsd: The way to restore priviledged stuff in userns We have collected a good set of calls that cannot be done inside user namespaces, but we need to [1]. Some of them has already being addressed, like prctl mm bits restore, but some are not. I'm pretty sceptical about the ability to relax the security checks on quite a lot of them (e.g. open-by-handle is indeed a very dangerous operation if allowed to unpriviledged user), so we need some way to call those things even in user namespaces. The good news about it its that all the calls I've found operate on file descriptors this way or another. So if we had a process, that lived outside of user namespace, we could ask one to do the high priority operation we need and exchange the affected file descriptor via unix socket. So the usernsd is the one doing exactly this. It starts before we create the user namespace and accepts requests via unix socket. Clients (the processes we restore) send him the functions they want to call, the descriptor they want to operate on and the arguments blob. Optionally, they can request some file descriptor back after the call. In non usernamespace case the daemon is not started and the calls are done right in the requestor's process environment. In the next patch there's an example of how to use this daemon to do the priviledged SO_SNDBUFFORCE/_RCVBUFFORCE sockopt on a socket. [1] http://criu.org/UserNamespace Signed-off-by: Pavel Emelyanov <xemul@parallels.com> Acked-by: Andrew Vagin <avagin@openvz.org>
2015-02-13 16:05:24 +04:00
return -1;
futex_set(&task_entries->nr_in_progress,
stage_participants(CR_STATE_RESTORE_NS));
ret = fork_with_pid(init);
if (ret < 0)
goto out;
restore_origin_ns_hook();
if (rsti(init)->clone_flags & CLONE_PARENT) {
struct sigaction act;
root_seized = 1;
/*
* Root task will be our sibling. This means, that
* we will not notice when (if) it dies in SIGCHLD
* handler, but we should. To do this -- attach to
* the guy with ptrace (below) and (!) make the kernel
* deliver us the signal when it will get stopped.
* It will in case of e.g. segfault before handling
* the signal.
*/
sigaction(SIGCHLD, NULL, &act);
act.sa_flags &= ~SA_NOCLDSTOP;
sigaction(SIGCHLD, &act, NULL);
if (ptrace(PTRACE_SEIZE, init->pid.real, 0, 0)) {
pr_perror("Can't attach to init");
goto out_kill;
}
}
/*
* uid_map and gid_map must be filled from a parent user namespace.
* prepare_userns_creds() must be called after filling mappings.
*/
if ((root_ns_mask & CLONE_NEWUSER) && prepare_userns(init))
goto out_kill;
pr_info("Wait until namespaces are created\n");
ret = restore_wait_inprogress_tasks();
if (ret)
goto out_kill;
if (root_ns_mask & CLONE_NEWNS) {
mnt_ns_fd = open_proc(init->pid.real, "ns/mnt");
if (mnt_ns_fd < 0) {
pr_perror("Can't open init's mntns fd");
goto out_kill;
}
}
ret = run_scripts(ACT_SETUP_NS);
if (ret)
goto out_kill;
timing_start(TIME_FORK);
ret = restore_switch_stage(CR_STATE_RESTORE_SHARED);
if (ret < 0)
goto out_kill;
ret = run_scripts(ACT_POST_SETUP_NS);
if (ret)
goto out_kill;
ret = restore_switch_stage(CR_STATE_FORKING);
if (ret < 0)
goto out_kill;
timing_stop(TIME_FORK);
ret = restore_switch_stage(CR_STATE_RESTORE);
if (ret < 0)
goto out_kill;
/* Zombies die after CR_STATE_RESTORE */
for_each_pstree_item(item) {
if (item->pid.state == TASK_DEAD)
task_entries->nr_threads--;
}
ret = restore_switch_stage(CR_STATE_RESTORE_SIGCHLD);
if (ret < 0)
goto out_kill;
/*
* There is no need to call try_clean_remaps() after this point,
* as restore went OK and all ghosts were removed by the openers.
*/
if (depopulate_roots_yard(mnt_ns_fd, false))
goto out_kill;
clean_remaps = 0;
close_safe(&mnt_ns_fd);
usernsd: The way to restore priviledged stuff in userns We have collected a good set of calls that cannot be done inside user namespaces, but we need to [1]. Some of them has already being addressed, like prctl mm bits restore, but some are not. I'm pretty sceptical about the ability to relax the security checks on quite a lot of them (e.g. open-by-handle is indeed a very dangerous operation if allowed to unpriviledged user), so we need some way to call those things even in user namespaces. The good news about it its that all the calls I've found operate on file descriptors this way or another. So if we had a process, that lived outside of user namespace, we could ask one to do the high priority operation we need and exchange the affected file descriptor via unix socket. So the usernsd is the one doing exactly this. It starts before we create the user namespace and accepts requests via unix socket. Clients (the processes we restore) send him the functions they want to call, the descriptor they want to operate on and the arguments blob. Optionally, they can request some file descriptor back after the call. In non usernamespace case the daemon is not started and the calls are done right in the requestor's process environment. In the next patch there's an example of how to use this daemon to do the priviledged SO_SNDBUFFORCE/_RCVBUFFORCE sockopt on a socket. [1] http://criu.org/UserNamespace Signed-off-by: Pavel Emelyanov <xemul@parallels.com> Acked-by: Andrew Vagin <avagin@openvz.org>
2015-02-13 16:05:24 +04:00
ret = stop_usernsd();
if (ret < 0)
goto out_kill;
ret = move_veth_to_bridge();
if (ret < 0)
goto out_kill;
ret = prepare_cgroup_properties();
if (ret < 0)
goto out_kill;
ret = run_scripts(ACT_POST_RESTORE);
if (ret != 0) {
pr_err("Aborting restore due to post-restore script ret code %d\n", ret);
timing_stop(TIME_RESTORE);
write_stats(RESTORE_STATS);
goto out_kill;
}
if (write_restored_pid())
goto out_kill;
/* Unlock network before disabling repair mode on sockets */
network_unlock();
/*
* Stop getting sigchld, after we resume the tasks they
* may start to exit poking criu in vain.
*/
ignore_kids();
/*
* -------------------------------------------------------------
* Below this line nothing should fail, because network is unlocked
*/
attach_to_tasks(root_seized);
ret = restore_switch_stage(CR_STATE_RESTORE_CREDS);
BUG_ON(ret);
timing_stop(TIME_RESTORE);
ret = catch_tasks(root_seized, &flag);
pr_info("Restore finished successfully. Resuming tasks.\n");
futex_set_and_wake(&task_entries->start, CR_STATE_COMPLETE);
if (ret == 0)
ret = parasite_stop_on_syscall(task_entries->nr_threads,
__NR_rt_sigreturn, flag);
if (clear_breakpoints())
pr_err("Unable to flush breakpoints\n");
if (ret == 0)
finalize_restore();
if (restore_freezer_state())
pr_err("Unable to restore freezer state\n");
fini_cgroup();
/* Detaches from processes and they continue run through sigreturn. */
finalize_restore_detach(ret);
write_stats(RESTORE_STATS);
ret = run_scripts(ACT_POST_RESUME);
if (ret != 0)
pr_err("Post-resume script ret code %d\n", ret);
if (!opts.restore_detach && !opts.exec_cmd)
wait(NULL);
return 0;
out_kill:
/*
* The processes can be killed only when all of them have been created,
* otherwise an external proccesses can be killed.
*/
if (root_ns_mask & CLONE_NEWPID) {
int status;
/* Kill init */
if (root_item->pid.real > 0)
kill(root_item->pid.real, SIGKILL);
if (waitpid(root_item->pid.real, &status, 0) < 0)
pr_warn("Unable to wait %d: %s",
root_item->pid.real, strerror(errno));
} else {
struct pstree_item *pi;
for_each_pstree_item(pi)
if (pi->pid.virt > 0)
kill(pi->pid.virt, SIGKILL);
}
out:
fini_cgroup();
if (clean_remaps)
depopulate_roots_yard(mnt_ns_fd, true);
usernsd: The way to restore priviledged stuff in userns We have collected a good set of calls that cannot be done inside user namespaces, but we need to [1]. Some of them has already being addressed, like prctl mm bits restore, but some are not. I'm pretty sceptical about the ability to relax the security checks on quite a lot of them (e.g. open-by-handle is indeed a very dangerous operation if allowed to unpriviledged user), so we need some way to call those things even in user namespaces. The good news about it its that all the calls I've found operate on file descriptors this way or another. So if we had a process, that lived outside of user namespace, we could ask one to do the high priority operation we need and exchange the affected file descriptor via unix socket. So the usernsd is the one doing exactly this. It starts before we create the user namespace and accepts requests via unix socket. Clients (the processes we restore) send him the functions they want to call, the descriptor they want to operate on and the arguments blob. Optionally, they can request some file descriptor back after the call. In non usernamespace case the daemon is not started and the calls are done right in the requestor's process environment. In the next patch there's an example of how to use this daemon to do the priviledged SO_SNDBUFFORCE/_RCVBUFFORCE sockopt on a socket. [1] http://criu.org/UserNamespace Signed-off-by: Pavel Emelyanov <xemul@parallels.com> Acked-by: Andrew Vagin <avagin@openvz.org>
2015-02-13 16:05:24 +04:00
stop_usernsd();
__restore_switch_stage(CR_STATE_FAIL);
pr_err("Restoring FAILED.\n");
return -1;
}
static int prepare_task_entries(void)
{
task_entries_pos = rst_mem_align_cpos(RM_SHREMAP);
task_entries = rst_mem_alloc(sizeof(*task_entries), RM_SHREMAP);
if (!task_entries) {
pr_perror("Can't map shmem");
return -1;
}
task_entries->nr_threads = 0;
task_entries->nr_tasks = 0;
task_entries->nr_helpers = 0;
futex_set(&task_entries->start, CR_STATE_RESTORE_NS);
usernsd: The way to restore priviledged stuff in userns We have collected a good set of calls that cannot be done inside user namespaces, but we need to [1]. Some of them has already being addressed, like prctl mm bits restore, but some are not. I'm pretty sceptical about the ability to relax the security checks on quite a lot of them (e.g. open-by-handle is indeed a very dangerous operation if allowed to unpriviledged user), so we need some way to call those things even in user namespaces. The good news about it its that all the calls I've found operate on file descriptors this way or another. So if we had a process, that lived outside of user namespace, we could ask one to do the high priority operation we need and exchange the affected file descriptor via unix socket. So the usernsd is the one doing exactly this. It starts before we create the user namespace and accepts requests via unix socket. Clients (the processes we restore) send him the functions they want to call, the descriptor they want to operate on and the arguments blob. Optionally, they can request some file descriptor back after the call. In non usernamespace case the daemon is not started and the calls are done right in the requestor's process environment. In the next patch there's an example of how to use this daemon to do the priviledged SO_SNDBUFFORCE/_RCVBUFFORCE sockopt on a socket. [1] http://criu.org/UserNamespace Signed-off-by: Pavel Emelyanov <xemul@parallels.com> Acked-by: Andrew Vagin <avagin@openvz.org>
2015-02-13 16:05:24 +04:00
mutex_init(&task_entries->userns_sync_lock);
return 0;
}
int cr_restore_tasks(void)
{
int ret = -1;
plugin: Rework plugins API, v2 Here we define new api to be used in plugins. - Plugin should provide a descriptor with help of CR_PLUGIN_REGISTER macro, or in case if plugin require no init/exit functions -- with CR_PLUGIN_REGISTER_DUMMY. - Plugin should define a plugin hook with help of CR_PLUGIN_REGISTER_HOOK macro. - Now init/exit functions of plugins takes @stage argument which tells plugin which stage of criu it's been called on dump/restore. For exit it also takes @ret which allows plugin to know if something went wrong and it needs to cleanup own resources. The idea behind is to not limit plugins authors with names of functions they might need to use for particular hook. Such new API deprecates olds plugins structure but to keep backward compatibility we will provide a tiny layer of additional code to support old plugins for at least a couple of release cycles. For example a trivial plugin might look like | #include <sys/types.h> | #include <sys/stat.h> | #include <fcntl.h> | #include <libgen.h> | #include <errno.h> | | #include <sys/socket.h> | #include <linux/un.h> | | #include <stdio.h> | #include <stdlib.h> | #include <string.h> | #include <unistd.h> | | #include "criu-plugin.h" | #include "criu-log.h" | | static int dump_ext_file(int fd, int id) | { | pr_info("dump_ext_file: fd %d id %d\n", fd, id); | return 0; | } | | CR_PLUGIN_REGISTER_DUMMY("trivial") | CR_PLUGIN_REGISTER_HOOK(CR_PLUGIN_HOOK__DUMP_EXT_FILE, dump_ext_file) Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org> Acked-by: Andrew Vagin <avagin@parallels.com> Signed-off-by: Pavel Emelyanov <xemul@parallels.com>
2014-02-27 20:58:23 +04:00
if (cr_plugin_init(CR_PLUGIN_STAGE__RESTORE))
return -1;
if (check_img_inventory() < 0)
goto err;
if (init_stats(RESTORE_STATS))
goto err;
if (kerndat_init_rst())
goto err;
timing_start(TIME_RESTORE);
if (cpu_init() < 0)
goto err;
if (vdso_init())
goto err;
if (opts.cpu_cap & (CPU_CAP_INS | CPU_CAP_CPU)) {
2014-10-01 17:53:50 +04:00
if (cpu_validate_cpuinfo())
goto err;
}
if (prepare_task_entries() < 0)
goto err;
if (prepare_pstree() < 0)
goto err;
if (crtools_prepare_shared() < 0)
goto err;
if (criu_signals_setup() < 0)
goto err;
ret = restore_root_task(root_item);
err:
plugin: Rework plugins API, v2 Here we define new api to be used in plugins. - Plugin should provide a descriptor with help of CR_PLUGIN_REGISTER macro, or in case if plugin require no init/exit functions -- with CR_PLUGIN_REGISTER_DUMMY. - Plugin should define a plugin hook with help of CR_PLUGIN_REGISTER_HOOK macro. - Now init/exit functions of plugins takes @stage argument which tells plugin which stage of criu it's been called on dump/restore. For exit it also takes @ret which allows plugin to know if something went wrong and it needs to cleanup own resources. The idea behind is to not limit plugins authors with names of functions they might need to use for particular hook. Such new API deprecates olds plugins structure but to keep backward compatibility we will provide a tiny layer of additional code to support old plugins for at least a couple of release cycles. For example a trivial plugin might look like | #include <sys/types.h> | #include <sys/stat.h> | #include <fcntl.h> | #include <libgen.h> | #include <errno.h> | | #include <sys/socket.h> | #include <linux/un.h> | | #include <stdio.h> | #include <stdlib.h> | #include <string.h> | #include <unistd.h> | | #include "criu-plugin.h" | #include "criu-log.h" | | static int dump_ext_file(int fd, int id) | { | pr_info("dump_ext_file: fd %d id %d\n", fd, id); | return 0; | } | | CR_PLUGIN_REGISTER_DUMMY("trivial") | CR_PLUGIN_REGISTER_HOOK(CR_PLUGIN_HOOK__DUMP_EXT_FILE, dump_ext_file) Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org> Acked-by: Andrew Vagin <avagin@parallels.com> Signed-off-by: Pavel Emelyanov <xemul@parallels.com>
2014-02-27 20:58:23 +04:00
cr_plugin_fini(CR_PLUGIN_STAGE__RESTORE, ret);
return ret;
}
static long restorer_get_vma_hint(struct list_head *tgt_vma_list,
struct list_head *self_vma_list, long vma_len)
{
struct vma_area *t_vma, *s_vma;
long prev_vma_end = 0;
struct vma_area end_vma;
VmaEntry end_e;
end_vma.e = &end_e;
end_e.start = end_e.end = kdat.task_size;
prev_vma_end = PAGE_SIZE * 0x10; /* CONFIG_LSM_MMAP_MIN_ADDR=65536 */
s_vma = list_first_entry(self_vma_list, struct vma_area, list);
t_vma = list_first_entry(tgt_vma_list, struct vma_area, list);
while (1) {
if (prev_vma_end + vma_len > s_vma->e->start) {
if (s_vma->list.next == self_vma_list) {
s_vma = &end_vma;
continue;
}
if (s_vma == &end_vma)
break;
if (prev_vma_end < s_vma->e->end)
prev_vma_end = s_vma->e->end;
s_vma = list_entry(s_vma->list.next, struct vma_area, list);
continue;
}
if (prev_vma_end + vma_len > t_vma->e->start) {
if (t_vma->list.next == tgt_vma_list) {
t_vma = &end_vma;
continue;
}
if (t_vma == &end_vma)
break;
if (prev_vma_end < t_vma->e->end)
prev_vma_end = t_vma->e->end;
t_vma = list_entry(t_vma->list.next, struct vma_area, list);
continue;
}
return prev_vma_end;
}
return -1;
}
static inline int timeval_valid(struct timeval *tv)
{
return (tv->tv_sec >= 0) && ((unsigned long)tv->tv_usec < USEC_PER_SEC);
}
static inline int decode_itimer(char *n, ItimerEntry *ie, struct itimerval *val)
{
if (ie->isec == 0 && ie->iusec == 0) {
memzero_p(val);
return 0;
}
val->it_interval.tv_sec = ie->isec;
val->it_interval.tv_usec = ie->iusec;
if (!timeval_valid(&val->it_interval)) {
pr_err("Invalid timer interval\n");
return -1;
}
if (ie->vsec == 0 && ie->vusec == 0) {
/*
* Remaining time was too short. Set it to
* interval to make the timer armed and work.
*/
val->it_value.tv_sec = ie->isec;
val->it_value.tv_usec = ie->iusec;
} else {
val->it_value.tv_sec = ie->vsec;
val->it_value.tv_usec = ie->vusec;
}
if (!timeval_valid(&val->it_value)) {
pr_err("Invalid timer value\n");
return -1;
}
pr_info("Restored %s timer to %ld.%ld -> %ld.%ld\n", n,
val->it_value.tv_sec, val->it_value.tv_usec,
val->it_interval.tv_sec, val->it_interval.tv_usec);
return 0;
}
/*
* Legacy itimers restore from CR_FD_ITIMERS
*/
static int prepare_itimers_from_fd(int pid, struct task_restore_args *args)
{
int ret = -1;
struct cr_img *img;
ItimerEntry *ie;
if (!deprecated_ok("Itimers"))
return -1;
img = open_image(CR_FD_ITIMERS, O_RSTR, pid);
if (!img)
return -1;
ret = pb_read_one(img, &ie, PB_ITIMER);
if (ret < 0)
goto out;
ret = decode_itimer("real", ie, &args->itimers[0]);
itimer_entry__free_unpacked(ie, NULL);
if (ret < 0)
goto out;
ret = pb_read_one(img, &ie, PB_ITIMER);
if (ret < 0)
goto out;
ret = decode_itimer("virt", ie, &args->itimers[1]);
itimer_entry__free_unpacked(ie, NULL);
if (ret < 0)
goto out;
ret = pb_read_one(img, &ie, PB_ITIMER);
if (ret < 0)
goto out;
ret = decode_itimer("prof", ie, &args->itimers[2]);
itimer_entry__free_unpacked(ie, NULL);
if (ret < 0)
goto out;
out:
close_image(img);
return ret;
}
static int prepare_itimers(int pid, struct task_restore_args *args, CoreEntry *core)
{
int ret = 0;
TaskTimersEntry *tte = core->tc->timers;
if (!tte)
return prepare_itimers_from_fd(pid, args);
ret |= decode_itimer("real", tte->real, &args->itimers[0]);
ret |= decode_itimer("virt", tte->virt, &args->itimers[1]);
ret |= decode_itimer("prof", tte->prof, &args->itimers[2]);
return ret;
}
static inline int timespec_valid(struct timespec *ts)
{
return (ts->tv_sec >= 0) && ((unsigned long)ts->tv_nsec < NSEC_PER_SEC);
}
static inline int decode_posix_timer(PosixTimerEntry *pte,
struct restore_posix_timer *pt)
{
pt->val.it_interval.tv_sec = pte->isec;
pt->val.it_interval.tv_nsec = pte->insec;
if (!timespec_valid(&pt->val.it_interval)) {
pr_err("Invalid timer interval(posix)\n");
return -1;
}
if (pte->vsec == 0 && pte->vnsec == 0) {
// Remaining time was too short. Set it to
// interval to make the timer armed and work.
pt->val.it_value.tv_sec = pte->isec;
pt->val.it_value.tv_nsec = pte->insec;
} else {
pt->val.it_value.tv_sec = pte->vsec;
pt->val.it_value.tv_nsec = pte->vnsec;
}
if (!timespec_valid(&pt->val.it_value)) {
pr_err("Invalid timer value(posix)\n");
return -1;
}
pt->spt.it_id = pte->it_id;
pt->spt.clock_id = pte->clock_id;
pt->spt.si_signo = pte->si_signo;
pt->spt.it_sigev_notify = pte->it_sigev_notify;
pt->spt.sival_ptr = decode_pointer(pte->sival_ptr);
pt->overrun = pte->overrun;
return 0;
}
static int cmp_posix_timer_proc_id(const void *p1, const void *p2)
{
return ((struct restore_posix_timer *)p1)->spt.it_id - ((struct restore_posix_timer *)p2)->spt.it_id;
}
static void sort_posix_timers(struct task_restore_args *ta)
{
void *tmem;
/*
* This is required for restorer's create_posix_timers(),
* it will probe them one-by-one for the desired ID, since
* kernel doesn't provide another API for timer creation
* with given ID.
*/
if (ta->posix_timers_n > 0) {
tmem = rst_mem_remap_ptr((unsigned long)ta->posix_timers, RM_PRIVATE);
qsort(tmem, ta->posix_timers_n,
sizeof(struct restore_posix_timer),
cmp_posix_timer_proc_id);
}
}
/*
* Legacy posix timers restoration from CR_FD_POSIX_TIMERS
*/
static int prepare_posix_timers_from_fd(int pid, struct task_restore_args *ta)
{
struct cr_img *img;
int ret = -1;
struct restore_posix_timer *t;
if (!deprecated_ok("Posix timers"))
return -1;
img = open_image(CR_FD_POSIX_TIMERS, O_RSTR, pid);
if (!img)
return -1;
ta->posix_timers_n = 0;
while (1) {
PosixTimerEntry *pte;
ret = pb_read_one_eof(img, &pte, PB_POSIX_TIMER);
if (ret <= 0)
break;
t = rst_mem_alloc(sizeof(struct restore_posix_timer), RM_PRIVATE);
if (!t)
break;
ret = decode_posix_timer(pte, t);
if (ret < 0)
break;
posix_timer_entry__free_unpacked(pte, NULL);
ta->posix_timers_n++;
}
close_image(img);
if (!ret)
sort_posix_timers(ta);
return ret;
}
static int prepare_posix_timers(int pid, struct task_restore_args *ta, CoreEntry *core)
{
int i, ret = -1;
TaskTimersEntry *tte = core->tc->timers;
struct restore_posix_timer *t;
ta->posix_timers = (struct restore_posix_timer *)rst_mem_align_cpos(RM_PRIVATE);
if (!tte)
return prepare_posix_timers_from_fd(pid, ta);
ta->posix_timers_n = tte->n_posix;
for (i = 0; i < ta->posix_timers_n; i++) {
t = rst_mem_alloc(sizeof(struct restore_posix_timer), RM_PRIVATE);
if (!t)
goto out;
if (decode_posix_timer(tte->posix[i], t))
goto out;
}
ret = 0;
sort_posix_timers(ta);
out:
return ret;
}
static inline int verify_cap_size(CredsEntry *ce)
{
return ((ce->n_cap_inh == CR_CAP_SIZE) && (ce->n_cap_eff == CR_CAP_SIZE) &&
(ce->n_cap_prm == CR_CAP_SIZE) && (ce->n_cap_bnd == CR_CAP_SIZE));
}
static int prepare_mm(pid_t pid, struct task_restore_args *args)
{
int exe_fd, i, ret = -1;
MmEntry *mm = rsti(current)->mm;
args->mm = *mm;
args->mm.n_mm_saved_auxv = 0;
args->mm.mm_saved_auxv = NULL;
if (mm->n_mm_saved_auxv > AT_VECTOR_SIZE) {
pr_err("Image corrupted on pid %d\n", pid);
goto out;
}
args->mm_saved_auxv_size = mm->n_mm_saved_auxv*sizeof(auxv_t);
for (i = 0; i < mm->n_mm_saved_auxv; ++i) {
args->mm_saved_auxv[i] = (auxv_t)mm->mm_saved_auxv[i];
}
exe_fd = open_reg_by_id(mm->exe_file_id);
if (exe_fd < 0)
goto out;
args->fd_exe_link = exe_fd;
ret = 0;
out:
return ret;
}
static void *restorer;
static unsigned long restorer_len;
static int prepare_restorer_blob(void)
{
/*
* We map anonymous mapping, not mremap the restorer itself later.
* Otherwise the restorer vma would be tied to criu binary which
* in turn will lead to set-exe-file prctl to fail with EBUSY.
*/
restorer_len = pie_size(restorer_blob);
restorer = mmap(NULL, restorer_len,
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_PRIVATE | MAP_ANON, 0, 0);
if (restorer == MAP_FAILED) {
pr_perror("Can't map restorer code");
return -1;
}
memcpy(restorer, &restorer_blob, sizeof(restorer_blob));
return 0;
}
static int remap_restorer_blob(void *addr)
{
void *mem;
mem = mremap(restorer, restorer_len, restorer_len,
MREMAP_FIXED | MREMAP_MAYMOVE, addr);
if (mem != addr) {
pr_perror("Can't remap restorer blob");
return -1;
}
ELF_RELOCS_APPLY_RESTORER(addr, addr);
return 0;
}
static int validate_sched_parm(struct rst_sched_param *sp)
{
if ((sp->nice < -20) || (sp->nice > 19))
return 0;
switch (sp->policy) {
case SCHED_RR:
case SCHED_FIFO:
return ((sp->prio > 0) && (sp->prio < 100));
case SCHED_IDLE:
case SCHED_OTHER:
case SCHED_BATCH:
return sp->prio == 0;
}
return 0;
}
static int prep_sched_info(struct rst_sched_param *sp, ThreadCoreEntry *tc)
{
if (!tc->has_sched_policy) {
sp->policy = SCHED_OTHER;
sp->nice = 0;
return 0;
}
sp->policy = tc->sched_policy;
sp->nice = tc->sched_nice;
sp->prio = tc->sched_prio;
if (!validate_sched_parm(sp)) {
pr_err("Inconsistent sched params received (%d.%d.%d)\n",
sp->policy, sp->nice, sp->prio);
return -1;
}
return 0;
}
static unsigned long decode_rlim(u_int64_t ival)
{
return ival == -1 ? RLIM_INFINITY : ival;
}
/*
* Legacy rlimits restore from CR_FD_RLIMIT
*/
static int prepare_rlimits_from_fd(int pid, struct task_restore_args *ta)
{
struct rlimit *r;
int ret;
struct cr_img *img;
if (!deprecated_ok("Rlimits"))
return -1;
/*
* Old image -- read from the file.
*/
img = open_image(CR_FD_RLIMIT, O_RSTR, pid);
if (!img)
return -1;
ta->rlims_n = 0;
while (1) {
RlimitEntry *re;
ret = pb_read_one_eof(img, &re, PB_RLIMIT);
if (ret <= 0)
break;
r = rst_mem_alloc(sizeof(*r), RM_PRIVATE);
if (!r) {
pr_err("Can't allocate memory for resource %d\n",
ta->rlims_n);
return -1;
}
r->rlim_cur = decode_rlim(re->cur);
r->rlim_max = decode_rlim(re->max);
if (r->rlim_cur > r->rlim_max) {
pr_err("Can't restore cur > max for %d.%d\n",
pid, ta->rlims_n);
r->rlim_cur = r->rlim_max;
}
rlimit_entry__free_unpacked(re, NULL);
ta->rlims_n++;
}
close_image(img);
return 0;
}
static int prepare_rlimits(int pid, struct task_restore_args *ta, CoreEntry *core)
{
int i;
TaskRlimitsEntry *rls = core->tc->rlimits;
struct rlimit64 *r;
ta->rlims = (struct rlimit64 *)rst_mem_align_cpos(RM_PRIVATE);
if (!rls)
return prepare_rlimits_from_fd(pid, ta);
for (i = 0; i < rls->n_rlimits; i++) {
r = rst_mem_alloc(sizeof(*r), RM_PRIVATE);
if (!r) {
pr_err("Can't allocate memory for resource %d\n", i);
return -1;
}
r->rlim_cur = decode_rlim(rls->rlimits[i]->cur);
r->rlim_max = decode_rlim(rls->rlimits[i]->max);
if (r->rlim_cur > r->rlim_max) {
pr_warn("Can't restore cur > max for %d.%d\n", pid, i);
r->rlim_cur = r->rlim_max;
}
}
ta->rlims_n = rls->n_rlimits;
return 0;
}
static int signal_to_mem(SiginfoEntry *sie)
{
siginfo_t *info, *t;
info = (siginfo_t *) sie->siginfo.data;
t = rst_mem_alloc(sizeof(siginfo_t), RM_PRIVATE);
if (!t)
return -1;
memcpy(t, info, sizeof(*info));
return 0;
}
static int open_signal_image(int type, pid_t pid, unsigned int *nr)
{
int ret;
struct cr_img *img;
img = open_image(type, O_RSTR, pid);
if (!img)
return -1;
*nr = 0;
while (1) {
SiginfoEntry *sie;
ret = pb_read_one_eof(img, &sie, PB_SIGINFO);
if (ret <= 0)
break;
if (sie->siginfo.len != sizeof(siginfo_t)) {
pr_err("Unknown image format\n");
ret = -1;
break;
}
ret = signal_to_mem(sie);
if (ret)
break;
(*nr)++;
siginfo_entry__free_unpacked(sie, NULL);
}
close_image(img);
return ret ? : 0;
}
static int prepare_one_signal_queue(SignalQueueEntry *sqe, unsigned int *nr)
{
int i;
for (i = 0; i < sqe->n_signals; i++)
if (signal_to_mem(sqe->signals[i]))
return -1;
*nr = sqe->n_signals;
return 0;
}
static unsigned int *siginfo_priv_nr; /* FIXME -- put directly on thread_args */
static int prepare_signals(int pid, struct task_restore_args *ta, CoreEntry *leader_core)
{
int ret = -1, i;
ta->siginfo = (siginfo_t *)rst_mem_align_cpos(RM_PRIVATE);
siginfo_priv_nr = xmalloc(sizeof(int) * current->nr_threads);
if (siginfo_priv_nr == NULL)
goto out;
/* Prepare shared signals */
if (!leader_core->tc->signals_s)/*backward compatibility*/
ret = open_signal_image(CR_FD_SIGNAL, pid, &ta->siginfo_n);
else
ret = prepare_one_signal_queue(leader_core->tc->signals_s, &ta->siginfo_n);
if (ret < 0)
goto out;
for (i = 0; i < current->nr_threads; i++) {
if (!current->core[i]->thread_core->signals_p)/*backward compatibility*/
ret = open_signal_image(CR_FD_PSIGNAL,
current->threads[i].virt, &siginfo_priv_nr[i]);
else
ret = prepare_one_signal_queue(current->core[i]->thread_core->signals_p,
&siginfo_priv_nr[i]);
if (ret < 0)
goto out;
}
out:
return ret;
}
extern void __gcov_flush(void) __attribute__((weak));
void __gcov_flush(void) {}
static void rst_reloc_creds(struct thread_restore_args *thread_args,
unsigned long *creds_pos_next)
{
struct thread_creds_args *args;
if (unlikely(!*creds_pos_next))
return;
args = rst_mem_remap_ptr(*creds_pos_next, RM_PRIVATE);
if (args->lsm_profile)
args->lsm_profile = rst_mem_remap_ptr(args->mem_lsm_profile_pos, RM_PRIVATE);
if (args->groups)
args->groups = rst_mem_remap_ptr(args->mem_groups_pos, RM_PRIVATE);
*creds_pos_next = args->mem_pos_next;
thread_args->creds_args = args;
}
static struct thread_creds_args *
rst_prep_creds_args(CredsEntry *ce, unsigned long *prev_pos)
{
unsigned long this_pos;
struct thread_creds_args *args;
if (!verify_cap_size(ce)) {
pr_err("Caps size mismatch %d %d %d %d\n",
(int)ce->n_cap_inh, (int)ce->n_cap_eff,
(int)ce->n_cap_prm, (int)ce->n_cap_bnd);
return ERR_PTR(-EINVAL);
}
this_pos = rst_mem_align_cpos(RM_PRIVATE);
args = rst_mem_alloc(sizeof(*args), RM_PRIVATE);
if (!args)
return ERR_PTR(-ENOMEM);
args->cap_last_cap = kdat.last_cap;
memcpy(&args->creds, ce, sizeof(args->creds));
if (ce->lsm_profile || opts.lsm_supplied) {
char *rendered = NULL, *profile;
profile = ce->lsm_profile;
if (opts.lsm_supplied)
profile = opts.lsm_profile;
if (validate_lsm(profile) < 0)
return ERR_PTR(-EINVAL);
if (profile && render_lsm_profile(profile, &rendered)) {
return ERR_PTR(-EINVAL);
}
if (rendered) {
size_t lsm_profile_len;
char *lsm_profile;
args->mem_lsm_profile_pos = rst_mem_align_cpos(RM_PRIVATE);
lsm_profile_len = strlen(rendered);
lsm_profile = rst_mem_alloc(lsm_profile_len + 1, RM_PRIVATE);
if (!lsm_profile) {
xfree(rendered);
return ERR_PTR(-ENOMEM);
}
args = rst_mem_remap_ptr(this_pos, RM_PRIVATE);
args->lsm_profile = lsm_profile;
strncpy(args->lsm_profile, rendered, lsm_profile_len);
xfree(rendered);
}
} else {
args->lsm_profile = NULL;
args->mem_lsm_profile_pos = 0;
}
/*
* Zap fields which we can't use.
*/
args->creds.cap_inh = NULL;
args->creds.cap_eff = NULL;
args->creds.cap_prm = NULL;
args->creds.cap_bnd = NULL;
args->creds.groups = NULL;
args->creds.lsm_profile = NULL;
memcpy(args->cap_inh, ce->cap_inh, sizeof(args->cap_inh));
memcpy(args->cap_eff, ce->cap_eff, sizeof(args->cap_eff));
memcpy(args->cap_prm, ce->cap_prm, sizeof(args->cap_prm));
memcpy(args->cap_bnd, ce->cap_bnd, sizeof(args->cap_bnd));
if (ce->n_groups) {
unsigned int *groups;
args->mem_groups_pos = rst_mem_align_cpos(RM_PRIVATE);
groups = rst_mem_alloc(ce->n_groups * sizeof(u32), RM_PRIVATE);
if (!groups)
return ERR_PTR(-ENOMEM);
args = rst_mem_remap_ptr(this_pos, RM_PRIVATE);
args->groups = groups;
memcpy(args->groups, ce->groups, ce->n_groups * sizeof(u32));
} else {
args->groups = NULL;
args->mem_groups_pos = 0;
}
args->mem_pos_next = 0;
if (prev_pos) {
if (*prev_pos) {
struct thread_creds_args *prev;
prev = rst_mem_remap_ptr(*prev_pos, RM_PRIVATE);
prev->mem_pos_next = this_pos;
}
*prev_pos = this_pos;
}
return args;
}
static int rst_prep_creds_from_img(pid_t pid)
{
CredsEntry *ce = NULL;
struct cr_img *img;
int ret;
img = open_image(CR_FD_CREDS, O_RSTR, pid);
if (!img)
return -ENOENT;
ret = pb_read_one(img, &ce, PB_CREDS);
close_image(img);
if (ret > 0) {
struct thread_creds_args *args;
args = rst_prep_creds_args(ce, NULL);
if (IS_ERR(args))
ret = PTR_ERR(args);
else
ret = 0;
}
creds_entry__free_unpacked(ce, NULL);
return ret;
}
static int rst_prep_creds(pid_t pid, CoreEntry *core, unsigned long *creds_pos)
{
struct thread_creds_args *args = NULL;
unsigned long this_pos = 0;
size_t i;
/*
* This is _really_ very old image
* format where @thread_core were not
* present. It means we don't have
* creds either, just ignore and exit
* early.
*/
if (unlikely(!core->thread_core)) {
*creds_pos = 0;
return 0;
}
*creds_pos = rst_mem_align_cpos(RM_PRIVATE);
/*
* Old format: one Creds per task carried in own image file.
*/
if (!core->thread_core->creds)
return rst_prep_creds_from_img(pid);
for (i = 0; i < current->nr_threads; i++) {
CredsEntry *ce = current->core[i]->thread_core->creds;
args = rst_prep_creds_args(ce, &this_pos);
if (IS_ERR(args))
return PTR_ERR(args);
}
return 0;
}
static int sigreturn_restore(pid_t pid, struct task_restore_args *task_args, unsigned long alen, CoreEntry *core)
{
void *mem = MAP_FAILED;
void *restore_task_exec_start;
long new_sp;
long ret;
long rst_mem_size;
long memzone_size;
struct thread_restore_args *thread_args;
struct restore_mem_zone *mz;
#ifdef CONFIG_VDSO
unsigned long vdso_rt_size = 0;
#endif
struct vm_area_list self_vmas;
struct vm_area_list *vmas = &rsti(current)->vmas;
int i, siginfo_n;
unsigned long creds_pos = 0;
unsigned long creds_pos_next;
pr_info("Restore via sigreturn\n");
/* pr_info_vma_list(&self_vma_list); */
BUILD_BUG_ON(sizeof(struct task_restore_args) & 1);
BUILD_BUG_ON(sizeof(struct thread_restore_args) & 1);
/*
* Read creds info for every thread and allocate memory
* needed so we can use this data inside restorer.
*/
if (rst_prep_creds(pid, core, &creds_pos))
goto err_nv;
/*
* We're about to search for free VM area and inject the restorer blob
* into it. No irrelevant mmaps/mremaps beyond this point, otherwise
* this unwanted mapping might get overlapped by the restorer.
*/
ret = parse_self_maps_lite(&self_vmas);
if (ret < 0)
goto err;
rst_mem_size = rst_mem_lock();
memzone_size = round_up(sizeof(struct restore_mem_zone) * current->nr_threads, page_size());
task_args->bootstrap_len = restorer_len + memzone_size + alen + rst_mem_size;
BUG_ON(task_args->bootstrap_len & (PAGE_SIZE - 1));
pr_info("%d threads require %ldK of memory\n",
current->nr_threads, KBYTES(task_args->bootstrap_len));
#ifdef CONFIG_VDSO
/*
vdso: x86 -- Add handling of vvar zones New kernel 3.16 will have old vDSO zone splitted into the two vmas: one for vdso code itself and second that named vvar for data been referenced from vdso code. Because I can't do 'dump' and 'restore' parts of the code separately (otherwise test would fail) the commit is pretty big one and hard to read so here is detailed explanation what's going on. 1) When start dumping we detect vvar zone by reading /proc/pid/smap and looking up for "[vvar]" token. Note the vvar zone is mapped by a kernel with PF/IO flags so we should not fail here. Also it's assumed that at least for now kernel won't be changed much and [vvar] zone always follows the [vdso] zone, otherwise criu will print error. 2) In previous commits we disabled dumping vvar area contents so the restorer code never try to read vvar data but still we need to map vvar zone thus vma entry remains in image. 3) As with previous vdso format we might have 2 cases a) Dump and restore is happening on same kernel b) Dump and restore are done on different kernels To detect which case we have we parse vdso data from image and find symbols offsets then compare their values with runtime symbols provided us by a kernel. If they match and (!!!) the size of vvar zone is the same -- we simply remap both zones from runtime kernel into the positions dumpee had at checkpoint time. This is that named "inplace" remap (a). If this happens the vdso_proxify() routine drops VMA_AREA_REGULAR from vvar area provided by a caller code and restorer won't try to handle this vma. It looks somehow strange and probably should be reworked but for now I left it as is to minimize the patch. In case of (b) we need to generate a proxy. We do that in same way as we were before just include vvar zone into proxy and save vvar proxy address inside vdso mark injected into vdso area. Thus on subsequent checkpoint we can detect proxy vvar zone and rip it off the list of vmas to handle. Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org> Acked-by: Andrew Vagin <avagin@parallels.com> Signed-off-by: Pavel Emelyanov <xemul@parallels.com>
2014-06-20 19:35:08 +04:00
* Figure out how much memory runtime vdso and vvar will need.
*/
vdso_rt_size = vdso_vma_size(&vdso_sym_rt);
if (vdso_rt_size && vvar_vma_size(&vdso_sym_rt))
vdso_rt_size += ALIGN(vvar_vma_size(&vdso_sym_rt), PAGE_SIZE);
task_args->bootstrap_len += vdso_rt_size;
#endif
/*
* Restorer is a blob (code + args) that will get mapped in some
* place, that should _not_ intersect with both -- current mappings
* and mappings of the task we're restoring here. The subsequent
* call finds the start address for the restorer.
*
* After the start address is found we populate it with the restorer
* parts one by one (some are remap-ed, some are mmap-ed and copied
* or inited from scratch).
*/
mem = (void *)restorer_get_vma_hint(&vmas->h, &self_vmas.h,
task_args->bootstrap_len);
if (mem == (void *)-1) {
pr_err("No suitable area for task_restore bootstrap (%ldK)\n",
task_args->bootstrap_len);
goto err;
}
pr_info("Found bootstrap VMA hint at: %p (needs ~%ldK)\n",
mem, KBYTES(task_args->bootstrap_len));
ret = remap_restorer_blob(mem);
if (ret < 0)
goto err;
/*
* Prepare a memory map for restorer. Note a thread space
* might be completely unused so it's here just for convenience.
*/
task_args->clone_restore_fn = restorer_sym(mem, arch_export_restore_thread);
restore_task_exec_start = restorer_sym(mem, arch_export_restore_task);
rsti(current)->munmap_restorer = restorer_sym(mem, arch_export_unmap);
task_args->bootstrap_start = mem;
mem += restorer_len;
/* VMA we need for stacks and sigframes for threads */
if (mmap(mem, memzone_size, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANON | MAP_FIXED, 0, 0) != mem) {
pr_err("Can't mmap section for restore code\n");
goto err;
}
memzero(mem, memzone_size);
mz = mem;
mem += memzone_size;
/* New home for task_restore_args and thread_restore_args */
task_args = mremap(task_args, alen, alen, MREMAP_MAYMOVE|MREMAP_FIXED, mem);
if (task_args != mem) {
pr_perror("Can't move task args");
goto err;
}
task_args->rst_mem = mem;
task_args->rst_mem_size = rst_mem_size + alen;
thread_args = (struct thread_restore_args *)(task_args + 1);
/*
* And finally -- the rest arguments referenced by task_ and
* thread_restore_args. Pointers will get remapped below.
*/
mem += alen;
if (rst_mem_remap(mem))
goto err;
/*
* At this point we've found a gap in VM that fits in both -- current
* and target tasks' mappings -- and its structure is
*
* | restorer code | memzone (stacks and sigframes) | arguments |
*
* Arguments is task_restore_args, thread_restore_args-s and all
* the bunch of objects allocated with rst_mem_alloc().
* Note, that the task_args itself is inside the 3rd section and (!)
* it gets unmapped at the very end of __export_restore_task
*/
task_args->proc_fd = dup(get_service_fd(PROC_FD_OFF));
if (task_args->proc_fd < 0) {
pr_perror("can't dup proc fd");
goto err;
}
task_args->breakpoint = &rsti(current)->breakpoint;
task_args->task_entries = rst_mem_remap_ptr(task_entries_pos, RM_SHREMAP);
task_args->premmapped_addr = (unsigned long)rsti(current)->premmapped_addr;
task_args->premmapped_len = rsti(current)->premmapped_len;
task_args->task_size = kdat.task_size;
RST_MEM_FIXUP_PPTR(task_args->vmas);
RST_MEM_FIXUP_PPTR(task_args->rings);
RST_MEM_FIXUP_PPTR(task_args->tcp_socks);
RST_MEM_FIXUP_PPTR(task_args->timerfd);
RST_MEM_FIXUP_PPTR(task_args->posix_timers);
RST_MEM_FIXUP_PPTR(task_args->siginfo);
RST_MEM_FIXUP_PPTR(task_args->rlims);
RST_MEM_FIXUP_PPTR(task_args->helpers);
RST_MEM_FIXUP_PPTR(task_args->zombies);
RST_MEM_FIXUP_PPTR(task_args->seccomp_filters);
if (core->tc->has_seccomp_mode)
task_args->seccomp_mode = core->tc->seccomp_mode;
/*
* Arguments for task restoration.
*/
BUG_ON(core->mtype != CORE_ENTRY__MARCH);
task_args->logfd = log_get_fd();
task_args->loglevel = log_get_loglevel();
task_args->sigchld_act = sigchld_act;
strncpy(task_args->comm, core->tc->comm, sizeof(task_args->comm));
/*
* Fill up per-thread data.
*/
creds_pos_next = creds_pos;
siginfo_n = task_args->siginfo_n;
for (i = 0; i < current->nr_threads; i++) {
CoreEntry *tcore;
struct rt_sigframe *sigframe;
thread_args[i].pid = current->threads[i].virt;
thread_args[i].siginfo_n = siginfo_priv_nr[i];
thread_args[i].siginfo = task_args->siginfo;
thread_args[i].siginfo += siginfo_n;
siginfo_n += thread_args[i].siginfo_n;
/* skip self */
if (thread_args[i].pid == pid) {
task_args->t = thread_args + i;
tcore = core;
} else
tcore = current->core[i];
if ((tcore->tc || tcore->ids) && thread_args[i].pid != pid) {
pr_err("Thread has optional fields present %d\n",
thread_args[i].pid);
ret = -1;
}
if (ret < 0) {
pr_err("Can't read core data for thread %d\n",
thread_args[i].pid);
goto err;
}
thread_args[i].ta = task_args;
thread_args[i].gpregs = *CORE_THREAD_ARCH_INFO(tcore)->gpregs;
thread_args[i].clear_tid_addr = CORE_THREAD_ARCH_INFO(tcore)->clear_tid_addr;
core_get_tls(tcore, &thread_args[i].tls);
rst_reloc_creds(&thread_args[i], &creds_pos_next);
thread_args[i].has_futex = true;
thread_args[i].futex_rla = tcore->thread_core->futex_rla;
thread_args[i].futex_rla_len = tcore->thread_core->futex_rla_len;
thread_args[i].pdeath_sig = tcore->thread_core->pdeath_sig;
if (tcore->thread_core->pdeath_sig > _KNSIG) {
pr_err("Pdeath signal is too big\n");
goto err;
}
ret = prep_sched_info(&thread_args[i].sp, tcore->thread_core);
if (ret)
goto err;
thread_args[i].mz = mz + i;
sigframe = (struct rt_sigframe *)&mz[i].rt_sigframe;
if (construct_sigframe(sigframe, sigframe, tcore))
goto err;
if (thread_args[i].pid != pid)
core_entry__free_unpacked(tcore, NULL);
pr_info("Thread %4d stack %8p rt_sigframe %8p\n",
i, mz[i].stack, mz[i].rt_sigframe);
}
#ifdef CONFIG_VDSO
/*
* Restorer needs own copy of vdso parameters. Runtime
* vdso must be kept non intersecting with anything else,
* since we need it being accessible even when own
* self-vmas are unmaped.
*/
mem += rst_mem_size;
task_args->vdso_rt_parked_at = (unsigned long)mem;
task_args->vdso_sym_rt = vdso_sym_rt;
task_args->vdso_rt_size = vdso_rt_size;
#endif
new_sp = restorer_stack(task_args->t->mz);
/* No longer need it */
core_entry__free_unpacked(core, NULL);
xfree(current->core);
/*
* Now prepare run-time data for threads restore.
*/
task_args->nr_threads = current->nr_threads;
task_args->thread_args = thread_args;
/*
* Make root and cwd restore _that_ late not to break any
* attempts to open files by paths above (e.g. /proc).
*/
if (restore_fs(current))
goto err;
close_image_dir();
close_proc();
close_service_fd(ROOT_FD_OFF);
usernsd: The way to restore priviledged stuff in userns We have collected a good set of calls that cannot be done inside user namespaces, but we need to [1]. Some of them has already being addressed, like prctl mm bits restore, but some are not. I'm pretty sceptical about the ability to relax the security checks on quite a lot of them (e.g. open-by-handle is indeed a very dangerous operation if allowed to unpriviledged user), so we need some way to call those things even in user namespaces. The good news about it its that all the calls I've found operate on file descriptors this way or another. So if we had a process, that lived outside of user namespace, we could ask one to do the high priority operation we need and exchange the affected file descriptor via unix socket. So the usernsd is the one doing exactly this. It starts before we create the user namespace and accepts requests via unix socket. Clients (the processes we restore) send him the functions they want to call, the descriptor they want to operate on and the arguments blob. Optionally, they can request some file descriptor back after the call. In non usernamespace case the daemon is not started and the calls are done right in the requestor's process environment. In the next patch there's an example of how to use this daemon to do the priviledged SO_SNDBUFFORCE/_RCVBUFFORCE sockopt on a socket. [1] http://criu.org/UserNamespace Signed-off-by: Pavel Emelyanov <xemul@parallels.com> Acked-by: Andrew Vagin <avagin@openvz.org>
2015-02-13 16:05:24 +04:00
close_service_fd(USERNSD_SK);
__gcov_flush();
pr_info("task_args: %p\n"
"task_args->pid: %d\n"
"task_args->nr_threads: %d\n"
"task_args->clone_restore_fn: %p\n"
"task_args->thread_args: %p\n",
task_args, task_args->t->pid,
task_args->nr_threads,
task_args->clone_restore_fn,
task_args->thread_args);
/*
* An indirect call to task_restore, note it never returns
* and restoring core is extremely destructive.
*/
JUMP_TO_RESTORER_BLOB(new_sp, restore_task_exec_start, task_args);
err:
free_mappings(&self_vmas);
err_nv:
/* Just to be sure */
exit(1);
return -1;
}