2
0
mirror of https://github.com/lm-sensors/lm-sensors synced 2025-08-30 22:05:11 +00:00

(Phil) Basically just duplicated the LM79 driver I extracted to provide a

start for the LM80 driver.  (Since 80-79=1, they must be very similar,
right? :')  Oh, and I removed the ISA components from it since the LM80 is
an SMBus only chip, too.


git-svn-id: http://lm-sensors.org/svn/lm-sensors/trunk@84 7894878c-1315-0410-8ee3-d5d059ff63e0
This commit is contained in:
Philip Edelbrock
1998-12-17 04:15:10 +00:00
parent cd9e3adc9d
commit 772f10e964
2 changed files with 1470 additions and 0 deletions

735
kernel/chips/lm80.c Normal file
View File

@@ -0,0 +1,735 @@
/*
lm80.c - A Linux module for reading sensor data.
Copyright (c) 1998 Frodo Looijaard <frodol@dds.nl>
and Philip Edelbrock <phil@netroedge.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/malloc.h>
#include <linux/proc_fs.h>
#include <linux/ioport.h>
#include <linux/sysctl.h>
#include <asm/errno.h>
#include <asm/io.h>
#include <linux/types.h>
#include "smbus.h"
#include "version.h"
#include "isa.h"
#include "sensors.h"
#include "i2c.h"
#include "compat.h"
/* Many LM80 constants specified below */
/* Length of ISA address segment */
#define LM80_EXTENT 8
/* Where are the ISA address/data registers relative to the base address */
#define LM80_ADDR_REG_OFFSET 5
#define LM80_DATA_REG_OFFSET 6
/* The LM80 registers */
#define LM80_REG_IN_MAX(nr) (0x2b + (nr) * 2)
#define LM80_REG_IN_MIN(nr) (0x2c + (nr) * 2)
#define LM80_REG_IN(nr) (0x20 + (nr))
#define LM80_REG_FAN_MIN(nr) (0x3a + (nr))
#define LM80_REG_FAN(nr) (0x27 + (nr))
#define LM80_REG_TEMP 0x27
#define LM80_REG_TEMP_OVER 0x39
#define LM80_REG_TEMP_HYST 0x3a
#define LM80_REG_ALARM1 0x41
#define LM80_REG_ALARM2 0x42
#define LM80_REG_VID_FANDIV 0x47
#define LM80_REG_CONFIG 0x40
#define LM80_REG_CHIPID 0x49
/* Conversions. Rounding is only done on the TO_REG variants. */
static int lm80_in_conv[7] = {10000, 10000, 10000, 16892, 38000,
-34768, -15050 };
#define IN_TO_REG(val,nr) (((((val) * 100000 / lm80_in_conv[nr]) + 8) / 16) \
& 0xff)
#define IN_FROM_REG(val,nr) (((val) * 16 * lm80_in_conv[nr]) / 100000)
#define FAN_TO_REG(val) ((val)==0?255:((1350000+(val))/((val)*2)) & 0xff)
#define FAN_FROM_REG(val) ((val)==0?-1:(val)==255?0:1350000/((val)*2))
#define TEMP_TO_REG(val) (((val)<0?(((val)-5)/10)&0xff:((val)+5)/10) & 0xff)
#define TEMP_FROM_REG(val) (((val)>0x80?(val)-0x100:(val))*10)
#define VID_FROM_REG(val) ((val)==0x1f?0:(val)>=0x10?510-(val)*10:\
(val)>=0x06?0:205-(val)*5)
#define ALARMS_FROM_REG(val) (val)
#define DIV_FROM_REG(val) (1 << (val))
#define DIV_TO_REG(val) ((val)==8?3:(val)==4?2:(val)==1?0:1)
/* Initial limits */
#define LM80_INIT_IN_0 (vid==350?280:vid)
#define LM80_INIT_IN_1 (vid==350?280:vid)
#define LM80_INIT_IN_2 330
#define LM80_INIT_IN_3 500
#define LM80_INIT_IN_4 1200
#define LM80_INIT_IN_5 -1200
#define LM80_INIT_IN_6 -500
#define LM80_INIT_IN_PERCENTAGE 10
#define LM80_INIT_IN_MIN_0 \
(LM80_INIT_IN_0 - LM80_INIT_IN_0 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MAX_0 \
(LM80_INIT_IN_0 + LM80_INIT_IN_0 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MIN_1 \
(LM80_INIT_IN_1 - LM80_INIT_IN_1 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MAX_1 \
(LM80_INIT_IN_1 + LM80_INIT_IN_1 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MIN_2 \
(LM80_INIT_IN_2 - LM80_INIT_IN_2 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MAX_2 \
(LM80_INIT_IN_2 + LM80_INIT_IN_2 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MIN_3 \
(LM80_INIT_IN_3 - LM80_INIT_IN_3 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MAX_3 \
(LM80_INIT_IN_3 + LM80_INIT_IN_3 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MIN_4 \
(LM80_INIT_IN_4 - LM80_INIT_IN_4 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MAX_4 \
(LM80_INIT_IN_4 + LM80_INIT_IN_4 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MIN_5 \
(LM80_INIT_IN_5 - LM80_INIT_IN_5 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MAX_5 \
(LM80_INIT_IN_5 + LM80_INIT_IN_5 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MIN_6 \
(LM80_INIT_IN_6 - LM80_INIT_IN_6 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MAX_6 \
(LM80_INIT_IN_6 + LM80_INIT_IN_6 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_FAN_MIN_1 3000
#define LM80_INIT_FAN_MIN_2 3000
#define LM80_INIT_FAN_MIN_3 3000
#define LM80_INIT_TEMP_OVER 600
#define LM80_INIT_TEMP_HYST 500
#ifdef MODULE
extern int init_module(void);
extern int cleanup_module(void);
#endif /* MODULE */
/* This module may seem overly long and complicated. In fact, it is not so
bad. Quite a lot of bookkeeping is done. A real driver can often cut
some corners. */
/* For each registered LM80, we need to keep some data in memory. That
data is pointed to by lm80_list[NR]->data. The structure itself is
dynamically allocated, at the same time when a new lm80 client is
allocated. */
struct lm80_data {
struct semaphore lock;
int sysctl_id;
struct semaphore update_lock;
char valid; /* !=0 if following fields are valid */
unsigned long last_updated; /* In jiffies */
u8 in[7]; /* Register value */
u8 in_max[7]; /* Register value */
u8 in_min[7]; /* Register value */
u8 fan[3]; /* Register value */
u8 fan_min[3]; /* Register value */
u8 temp; /* Register value */
u8 temp_over; /* Register value */
u8 temp_hyst; /* Register value */
u8 fan_div[2]; /* Register encoding, shifted right */
u8 vid; /* Register encoding, combined */
u16 alarms; /* Register encoding, combined */
};
static int lm80_init(void);
static int lm80_cleanup(void);
static int lm80_attach_adapter(struct i2c_adapter *adapter);
static int lm80_detect_smbus(struct i2c_adapter *adapter);
static int lm80_detach_client(struct i2c_client *client);
static int lm80_detach_smbus(struct i2c_client *client);
static int lm80_new_client(struct i2c_adapter *adapter,
struct i2c_client *new_client);
static void lm80_remove_client(struct i2c_client *client);
static int lm80_command(struct i2c_client *client, unsigned int cmd,
void *arg);
static void lm80_inc_use (struct i2c_client *client);
static void lm80_dec_use (struct i2c_client *client);
static int lm80_read_value(struct i2c_client *client, u8 register);
static int lm80_write_value(struct i2c_client *client, u8 register, u8 value);
static void lm80_update_client(struct i2c_client *client);
static void lm80_init_client(struct i2c_client *client);
static void lm80_in(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results);
static void lm80_fan(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results);
static void lm80_temp(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results);
static void lm80_vid(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results);
static void lm80_alarms(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results);
static void lm80_fan_div(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results);
/* I choose here for semi-static LM80 allocation. Complete dynamic
allocation could also be used; the code needed for this would probably
take more memory than the datastructure takes now. */
#define MAX_LM80_NR 4
static struct i2c_client *lm80_list[MAX_LM80_NR];
/* The driver. I choose to use type i2c_driver, as at is identical to both
smbus_driver and isa_driver, and clients could be of either kind */
static struct i2c_driver lm80_driver = {
/* name */ "LM80 sensor driver",
/* id */ I2C_DRIVERID_LM80,
/* flags */ DF_NOTIFY,
/* attach_adapter */ &lm80_attach_adapter,
/* detach_client */ &lm80_detach_client,
/* command */ &lm80_command,
/* inc_use */ &lm80_inc_use,
/* dec_use */ &lm80_dec_use
};
/* Used by lm80_init/cleanup */
static int lm80_initialized = 0;
/* The /proc/sys entries */
/* These files are created for each detected LM80. This is just a template;
though at first sight, you might think we could use a statically
allocated list, we need some way to get back to the parent - which
is done through one of the 'extra' fields which are initialized
when a new copy is allocated. */
static ctl_table lm80_dir_table_template[] = {
{ LM80_SYSCTL_IN0, "in0", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_in },
{ LM80_SYSCTL_IN1, "in1", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_in },
{ LM80_SYSCTL_IN2, "in2", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_in },
{ LM80_SYSCTL_IN3, "in3", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_in },
{ LM80_SYSCTL_IN4, "in4", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_in },
{ LM80_SYSCTL_IN5, "in5", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_in },
{ LM80_SYSCTL_IN6, "in6", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_in },
{ LM80_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_fan },
{ LM80_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_fan },
{ LM80_SYSCTL_FAN3, "fan3", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_fan },
{ LM80_SYSCTL_TEMP, "temp", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_temp },
{ LM80_SYSCTL_VID, "vid", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_vid },
{ LM80_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_fan_div },
{ LM80_SYSCTL_ALARMS, "alarms", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_alarms },
{ 0 }
};
/* This function is called when:
* lm80_driver is inserted (when this module is loaded), for each
available adapter
* when a new adapter is inserted (and lm80_driver is still present) */
int lm80_attach_adapter(struct i2c_adapter *adapter)
{
return lm80_detect_smbus(adapter);
}
/* This function is called whenever a client should be removed:
* lm80_driver is removed (when this module is unloaded)
* when an adapter is removed which has a lm80 client (and lm80_driver
is still present). */
int lm80_detach_client(struct i2c_client *client)
{
return lm80_detach_smbus(client);
}
int lm80_detect_smbus(struct i2c_adapter *adapter)
{
int address,err;
struct i2c_client *new_client;
const char *type_name,*client_name;
/* OK, this is no detection. I know. It will do for now, though. */
err = 0;
for (address = 0x20; (! err) && (address <= 0x2f); address ++) {
/* Later on, we will keep a list of registered addresses for each
adapter, and check whether they are used here */
if (smbus_read_byte_data(adapter,address,LM80_REG_CONFIG) < 0)
continue;
/* Real detection code goes here */
err = smbus_read_byte_data(adapter,address,LM80_REG_CHIPID) & 0xfe;
printk("lm80.o: LM80 detected\n");
type_name = "lm80";
client_name = "LM80 chip";
/* Allocate space for a new client structure. To counter memory
ragmentation somewhat, we only do one kmalloc. */
if (! (new_client = kmalloc(sizeof(struct i2c_client) +
sizeof(struct lm80_data),
GFP_KERNEL))) {
err = -ENOMEM;
continue;
}
/* Fill the new client structure with data */
new_client->data = (struct lm80_data *) (new_client + 1);
new_client->addr = address;
strcpy(new_client->name,client_name);
if ((err = lm80_new_client(adapter,new_client)))
goto ERROR2;
/* Tell i2c-core a new client has arrived */
if ((err = i2c_attach_client(new_client)))
goto ERROR3;
/* Register a new directory entry with module sensors */
if ((err = sensors_register_entry(new_client,type_name,
lm80_dir_table_template)) < 0)
goto ERROR4;
((struct lm80_data *) (new_client->data))->sysctl_id = err;
err = 0;
/* Initialize the LM80 chip */
lm80_init_client(new_client);
continue;
/* OK, this is not exactly good programming practice, usually. But it is
very code-efficient in this case. */
ERROR4:
i2c_detach_client(new_client);
ERROR3:
lm80_remove_client((struct i2c_client *) new_client);
ERROR2:
kfree(new_client);
}
return err;
}
int lm80_detach_smbus(struct i2c_client *client)
{
int err,i;
for (i = 0; i < MAX_LM80_NR; i++)
if (client == lm80_list[i])
break;
if ((i == MAX_LM80_NR)) {
printk("lm80.o: Client to detach not found.\n");
return -ENOENT;
}
sensors_deregister_entry(((struct lm80_data *)(client->data))->sysctl_id);
if ((err = i2c_detach_client(client))) {
printk("lm80.o: Client deregistration failed, client not detached.\n");
return err;
}
lm80_remove_client(client);
kfree(client);
return 0;
}
/* Find a free slot, and initialize most of the fields */
int lm80_new_client(struct i2c_adapter *adapter,
struct i2c_client *new_client)
{
int i;
struct lm80_data *data;
/* First, seek out an empty slot */
for(i = 0; i < MAX_LM80_NR; i++)
if (! lm80_list[i])
break;
if (i == MAX_LM80_NR) {
printk("lm80.o: No empty slots left, recompile and heighten "
"MAX_LM80_NR!\n");
return -ENOMEM;
}
lm80_list[i] = new_client;
new_client->id = i;
new_client->adapter = adapter;
new_client->driver = &lm80_driver;
data = new_client->data;
data->valid = 0;
data->lock = MUTEX;
data->update_lock = MUTEX;
return 0;
}
/* Inverse of lm80_new_client */
void lm80_remove_client(struct i2c_client *client)
{
int i;
for (i = 0; i < MAX_LM80_NR; i++)
if (client == lm80_list[i])
lm80_list[i] = NULL;
}
/* No commands defined yet */
int lm80_command(struct i2c_client *client, unsigned int cmd, void *arg)
{
return 0;
}
/* Nothing here yet */
void lm80_inc_use (struct i2c_client *client)
{
#ifdef MODULE
MOD_INC_USE_COUNT;
#endif
}
/* Nothing here yet */
void lm80_dec_use (struct i2c_client *client)
{
#ifdef MODULE
MOD_DEC_USE_COUNT;
#endif
}
/* The SMBus locks itself, but ISA access must be locked explicitely!
We ignore the LM80 BUSY flag at this moment - it could lead to deadlocks,
would slow down the LM80 access and should not be necessary.
There are some ugly typecasts here, but the good new is - they should
nowhere else be necessary! */
int lm80_read_value(struct i2c_client *client, u8 reg)
{
int res;
if (i2c_is_isa_client(client)) {
down((struct semaphore *) (client->data));
outb_p(reg,(((struct isa_client *) client)->isa_addr) +
LM80_ADDR_REG_OFFSET);
res = inb_p((((struct isa_client *) client)->isa_addr) +
LM80_DATA_REG_OFFSET);
up((struct semaphore *) (client->data));
return res;
} else
return smbus_read_byte_data(client->adapter,client->addr, reg);
}
/* The SMBus locks itself, but ISA access muse be locked explicitely!
We ignore the LM80 BUSY flag at this moment - it could lead to deadlocks,
would slow down the LM80 access and should not be necessary.
There are some ugly typecasts here, but the good new is - they should
nowhere else be necessary! */
int lm80_write_value(struct i2c_client *client, u8 reg, u8 value)
{
if (i2c_is_isa_client(client)) {
down((struct semaphore *) (client->data));
outb_p(reg,((struct isa_client *) client)->isa_addr + LM80_ADDR_REG_OFFSET);
outb_p(value,((struct isa_client *) client)->isa_addr + LM80_DATA_REG_OFFSET);
up((struct semaphore *) (client->data));
return 0;
} else
return smbus_write_byte_data(client->adapter, client->addr, reg,value);
}
/* Called when we have found a new LM80. It should set limits, etc. */
void lm80_init_client(struct i2c_client *client)
{
int vid;
/* Reset all except Watchdog values and last conversion values
This sets fan-divs to 2, among others */
lm80_write_value(client,LM80_REG_CONFIG,0x80);
vid = lm80_read_value(client,LM80_REG_VID_FANDIV) & 0x0f;
vid |= (lm80_read_value(client,LM80_REG_CHIPID) & 0x01) >> 4;
vid = VID_FROM_REG(vid);
lm80_write_value(client,LM80_REG_IN_MIN(0),IN_TO_REG(LM80_INIT_IN_MIN_0,0));
lm80_write_value(client,LM80_REG_IN_MAX(0),IN_TO_REG(LM80_INIT_IN_MAX_0,0));
lm80_write_value(client,LM80_REG_IN_MIN(1),IN_TO_REG(LM80_INIT_IN_MIN_1,1));
lm80_write_value(client,LM80_REG_IN_MAX(1),IN_TO_REG(LM80_INIT_IN_MAX_1,1));
lm80_write_value(client,LM80_REG_IN_MIN(2),IN_TO_REG(LM80_INIT_IN_MIN_2,2));
lm80_write_value(client,LM80_REG_IN_MAX(2),IN_TO_REG(LM80_INIT_IN_MAX_2,2));
lm80_write_value(client,LM80_REG_IN_MIN(3),IN_TO_REG(LM80_INIT_IN_MIN_3,3));
lm80_write_value(client,LM80_REG_IN_MAX(3),IN_TO_REG(LM80_INIT_IN_MAX_3,3));
lm80_write_value(client,LM80_REG_IN_MIN(4),IN_TO_REG(LM80_INIT_IN_MIN_4,4));
lm80_write_value(client,LM80_REG_IN_MAX(4),IN_TO_REG(LM80_INIT_IN_MAX_4,4));
lm80_write_value(client,LM80_REG_IN_MIN(5),IN_TO_REG(LM80_INIT_IN_MIN_5,5));
lm80_write_value(client,LM80_REG_IN_MAX(5),IN_TO_REG(LM80_INIT_IN_MAX_5,5));
lm80_write_value(client,LM80_REG_IN_MIN(6),IN_TO_REG(LM80_INIT_IN_MIN_6,6));
lm80_write_value(client,LM80_REG_IN_MAX(6),IN_TO_REG(LM80_INIT_IN_MAX_6,6));
lm80_write_value(client,LM80_REG_FAN_MIN(1),FAN_TO_REG(LM80_INIT_FAN_MIN_1));
lm80_write_value(client,LM80_REG_FAN_MIN(2),FAN_TO_REG(LM80_INIT_FAN_MIN_2));
lm80_write_value(client,LM80_REG_FAN_MIN(3),FAN_TO_REG(LM80_INIT_FAN_MIN_3));
lm80_write_value(client,LM80_REG_TEMP_OVER,TEMP_TO_REG(LM80_INIT_TEMP_OVER));
lm80_write_value(client,LM80_REG_TEMP_HYST,TEMP_TO_REG(LM80_INIT_TEMP_HYST));
/* Start monitoring */
lm80_write_value(client,LM80_REG_CONFIG,
(lm80_read_value(client,LM80_REG_CONFIG) & 0xf7) | 0x01);
}
void lm80_update_client(struct i2c_client *client)
{
struct lm80_data *data = client->data;
int i;
down(&data->update_lock);
if ((jiffies - data->last_updated > HZ+HZ/2 ) ||
(jiffies < data->last_updated) || ! data->valid) {
#ifdef DEBUG
printk("Starting lm80 update\n");
#endif
for (i = 0; i <= 6; i++) {
data->in[i] = lm80_read_value(client,LM80_REG_IN(i));
data->in_min[i] = lm80_read_value(client,LM80_REG_IN_MIN(i));
data->in_max[i] = lm80_read_value(client,LM80_REG_IN_MAX(i));
}
for (i = 1; i <= 3; i++) {
data->fan[i-1] = lm80_read_value(client,LM80_REG_FAN(i));
data->fan_min[i-1] = lm80_read_value(client,LM80_REG_FAN_MIN(i));
}
data->temp = lm80_read_value(client,LM80_REG_TEMP);
data->temp_over = lm80_read_value(client,LM80_REG_TEMP_OVER);
data->temp_hyst = lm80_read_value(client,LM80_REG_TEMP_HYST);
i = lm80_read_value(client,LM80_REG_VID_FANDIV);
data->vid = i & 0x0f;
data->vid |= (lm80_read_value(client,LM80_REG_CHIPID) & 0x01) >> 4;
data->fan_div[0] = (i >> 4) & 0x03;
data->fan_div[1] = i >> 6;
data->alarms = lm80_read_value(client,LM80_REG_ALARM1) +
(lm80_read_value(client,LM80_REG_ALARM2) >> 8);
data->last_updated = jiffies;
data->valid = 1;
}
up(&data->update_lock);
}
/* The next few functions are the call-back functions of the /proc/sys and
sysctl files. Which function is used is defined in the ctl_table in
the extra1 field.
Each function must return the magnitude (power of 10 to divide the date
with) if it is called with operation==SENSORS_PROC_REAL_INFO. It must
put a maximum of *nrels elements in results reflecting the data of this
file, and set *nrels to the number it actually put in it, if operation==
SENSORS_PROC_REAL_READ. Finally, it must get upto *nrels elements from
results and write them to the chip, if operations==SENSORS_PROC_REAL_WRITE.
Note that on SENSORS_PROC_REAL_READ, I do not check whether results is
large enough (by checking the incoming value of *nrels). This is not very
good practice, but as long as you put less than about 5 values in results,
you can assume it is large enough. */
void lm80_in(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results)
{
struct lm80_data *data = client->data;
int nr = ctl_name - LM80_SYSCTL_IN0;
if (operation == SENSORS_PROC_REAL_INFO)
*nrels_mag = 2;
else if (operation == SENSORS_PROC_REAL_READ) {
lm80_update_client(client);
results[0] = IN_FROM_REG(data->in_min[nr],nr);
results[1] = IN_FROM_REG(data->in_max[nr],nr);
results[2] = IN_FROM_REG(data->in[nr],nr);
*nrels_mag = 3;
} else if (operation == SENSORS_PROC_REAL_WRITE) {
if (*nrels_mag >= 1) {
data->in_min[nr] = IN_TO_REG(results[0],nr);
lm80_write_value(client,LM80_REG_IN_MIN(nr),data->in_min[nr]);
}
if (*nrels_mag >= 2) {
data->in_max[nr] = IN_TO_REG(results[1],nr);
lm80_write_value(client,LM80_REG_IN_MAX(nr),data->in_max[nr]);
}
}
}
void lm80_fan(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results)
{
struct lm80_data *data = client->data;
int nr = ctl_name - LM80_SYSCTL_FAN1 + 1;
if (operation == SENSORS_PROC_REAL_INFO)
*nrels_mag = 0;
else if (operation == SENSORS_PROC_REAL_READ) {
lm80_update_client(client);
results[0] = FAN_FROM_REG(data->fan_min[nr-1]);
results[1] = FAN_FROM_REG(data->fan[nr-1]);
*nrels_mag = 2;
} else if (operation == SENSORS_PROC_REAL_WRITE) {
if (*nrels_mag >= 1) {
data->fan_min[nr-1] = FAN_TO_REG(results[0]);
lm80_write_value(client,LM80_REG_FAN_MIN(nr),data->fan_min[nr-1]);
}
}
}
void lm80_temp(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results)
{
struct lm80_data *data = client->data;
if (operation == SENSORS_PROC_REAL_INFO)
*nrels_mag = 1;
else if (operation == SENSORS_PROC_REAL_READ) {
lm80_update_client(client);
results[0] = TEMP_FROM_REG(data->temp_over);
results[1] = TEMP_FROM_REG(data->temp_hyst);
results[2] = TEMP_FROM_REG(data->temp);
*nrels_mag = 3;
} else if (operation == SENSORS_PROC_REAL_WRITE) {
if (*nrels_mag >= 1) {
data->temp_over = TEMP_TO_REG(results[0]);
lm80_write_value(client,LM80_REG_TEMP_OVER,data->temp_over);
}
if (*nrels_mag >= 2) {
data->temp_hyst = TEMP_TO_REG(results[1]);
lm80_write_value(client,LM80_REG_TEMP_HYST,data->temp_hyst);
}
}
}
void lm80_vid(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results)
{
struct lm80_data *data = client->data;
if (operation == SENSORS_PROC_REAL_INFO)
*nrels_mag = 2;
else if (operation == SENSORS_PROC_REAL_READ) {
lm80_update_client(client);
results[0] = VID_FROM_REG(data->vid);
*nrels_mag = 1;
}
}
void lm80_alarms(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results)
{
struct lm80_data *data = client->data;
if (operation == SENSORS_PROC_REAL_INFO)
*nrels_mag = 0;
else if (operation == SENSORS_PROC_REAL_READ) {
lm80_update_client(client);
results[0] = ALARMS_FROM_REG(data->alarms);
*nrels_mag = 1;
}
}
void lm80_fan_div(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results)
{
struct lm80_data *data = client->data;
int old;
if (operation == SENSORS_PROC_REAL_INFO)
*nrels_mag = 0;
else if (operation == SENSORS_PROC_REAL_READ) {
lm80_update_client(client);
results[0] = DIV_FROM_REG(data->fan_div[0]);
results[1] = DIV_FROM_REG(data->fan_div[1]);
results[2] = 2;
*nrels_mag = 3;
} else if (operation == SENSORS_PROC_REAL_WRITE) {
old = lm80_read_value(client,LM80_REG_VID_FANDIV);
if (*nrels_mag >= 2) {
data->fan_div[1] = DIV_TO_REG(results[1]);
old = (old & 0x3f) | (data->fan_div[1] << 6);
}
if (*nrels_mag >= 1) {
data->fan_div[0] = DIV_TO_REG(results[0]);
old = (old & 0xcf) | (data->fan_div[0] << 4);
lm80_write_value(client,LM80_REG_VID_FANDIV,old);
}
}
}
int lm80_init(void)
{
int res;
printk("lm80.o version %s (%s)\n",LM_VERSION,LM_DATE);
lm80_initialized = 0;
if ((res =i2c_add_driver(&lm80_driver))) {
printk("lm80.o: Driver registration failed, module not inserted.\n");
lm80_cleanup();
return res;
}
lm80_initialized ++;
return 0;
}
int lm80_cleanup(void)
{
int res;
if (lm80_initialized >= 1) {
if ((res = i2c_del_driver(&lm80_driver))) {
printk("lm80.o: Driver deregistration failed, module not removed.\n");
return res;
}
lm80_initialized --;
}
return 0;
}
#ifdef MODULE
MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl> and Philip Edelbrock <phil@netroedge.com>");
MODULE_DESCRIPTION("LM80 driver");
int init_module(void)
{
return lm80_init();
}
int cleanup_module(void)
{
return lm80_cleanup();
}
#endif /* MODULE */

735
src/lm80.c Normal file
View File

@@ -0,0 +1,735 @@
/*
lm80.c - A Linux module for reading sensor data.
Copyright (c) 1998 Frodo Looijaard <frodol@dds.nl>
and Philip Edelbrock <phil@netroedge.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/malloc.h>
#include <linux/proc_fs.h>
#include <linux/ioport.h>
#include <linux/sysctl.h>
#include <asm/errno.h>
#include <asm/io.h>
#include <linux/types.h>
#include "smbus.h"
#include "version.h"
#include "isa.h"
#include "sensors.h"
#include "i2c.h"
#include "compat.h"
/* Many LM80 constants specified below */
/* Length of ISA address segment */
#define LM80_EXTENT 8
/* Where are the ISA address/data registers relative to the base address */
#define LM80_ADDR_REG_OFFSET 5
#define LM80_DATA_REG_OFFSET 6
/* The LM80 registers */
#define LM80_REG_IN_MAX(nr) (0x2b + (nr) * 2)
#define LM80_REG_IN_MIN(nr) (0x2c + (nr) * 2)
#define LM80_REG_IN(nr) (0x20 + (nr))
#define LM80_REG_FAN_MIN(nr) (0x3a + (nr))
#define LM80_REG_FAN(nr) (0x27 + (nr))
#define LM80_REG_TEMP 0x27
#define LM80_REG_TEMP_OVER 0x39
#define LM80_REG_TEMP_HYST 0x3a
#define LM80_REG_ALARM1 0x41
#define LM80_REG_ALARM2 0x42
#define LM80_REG_VID_FANDIV 0x47
#define LM80_REG_CONFIG 0x40
#define LM80_REG_CHIPID 0x49
/* Conversions. Rounding is only done on the TO_REG variants. */
static int lm80_in_conv[7] = {10000, 10000, 10000, 16892, 38000,
-34768, -15050 };
#define IN_TO_REG(val,nr) (((((val) * 100000 / lm80_in_conv[nr]) + 8) / 16) \
& 0xff)
#define IN_FROM_REG(val,nr) (((val) * 16 * lm80_in_conv[nr]) / 100000)
#define FAN_TO_REG(val) ((val)==0?255:((1350000+(val))/((val)*2)) & 0xff)
#define FAN_FROM_REG(val) ((val)==0?-1:(val)==255?0:1350000/((val)*2))
#define TEMP_TO_REG(val) (((val)<0?(((val)-5)/10)&0xff:((val)+5)/10) & 0xff)
#define TEMP_FROM_REG(val) (((val)>0x80?(val)-0x100:(val))*10)
#define VID_FROM_REG(val) ((val)==0x1f?0:(val)>=0x10?510-(val)*10:\
(val)>=0x06?0:205-(val)*5)
#define ALARMS_FROM_REG(val) (val)
#define DIV_FROM_REG(val) (1 << (val))
#define DIV_TO_REG(val) ((val)==8?3:(val)==4?2:(val)==1?0:1)
/* Initial limits */
#define LM80_INIT_IN_0 (vid==350?280:vid)
#define LM80_INIT_IN_1 (vid==350?280:vid)
#define LM80_INIT_IN_2 330
#define LM80_INIT_IN_3 500
#define LM80_INIT_IN_4 1200
#define LM80_INIT_IN_5 -1200
#define LM80_INIT_IN_6 -500
#define LM80_INIT_IN_PERCENTAGE 10
#define LM80_INIT_IN_MIN_0 \
(LM80_INIT_IN_0 - LM80_INIT_IN_0 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MAX_0 \
(LM80_INIT_IN_0 + LM80_INIT_IN_0 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MIN_1 \
(LM80_INIT_IN_1 - LM80_INIT_IN_1 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MAX_1 \
(LM80_INIT_IN_1 + LM80_INIT_IN_1 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MIN_2 \
(LM80_INIT_IN_2 - LM80_INIT_IN_2 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MAX_2 \
(LM80_INIT_IN_2 + LM80_INIT_IN_2 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MIN_3 \
(LM80_INIT_IN_3 - LM80_INIT_IN_3 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MAX_3 \
(LM80_INIT_IN_3 + LM80_INIT_IN_3 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MIN_4 \
(LM80_INIT_IN_4 - LM80_INIT_IN_4 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MAX_4 \
(LM80_INIT_IN_4 + LM80_INIT_IN_4 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MIN_5 \
(LM80_INIT_IN_5 - LM80_INIT_IN_5 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MAX_5 \
(LM80_INIT_IN_5 + LM80_INIT_IN_5 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MIN_6 \
(LM80_INIT_IN_6 - LM80_INIT_IN_6 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MAX_6 \
(LM80_INIT_IN_6 + LM80_INIT_IN_6 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_FAN_MIN_1 3000
#define LM80_INIT_FAN_MIN_2 3000
#define LM80_INIT_FAN_MIN_3 3000
#define LM80_INIT_TEMP_OVER 600
#define LM80_INIT_TEMP_HYST 500
#ifdef MODULE
extern int init_module(void);
extern int cleanup_module(void);
#endif /* MODULE */
/* This module may seem overly long and complicated. In fact, it is not so
bad. Quite a lot of bookkeeping is done. A real driver can often cut
some corners. */
/* For each registered LM80, we need to keep some data in memory. That
data is pointed to by lm80_list[NR]->data. The structure itself is
dynamically allocated, at the same time when a new lm80 client is
allocated. */
struct lm80_data {
struct semaphore lock;
int sysctl_id;
struct semaphore update_lock;
char valid; /* !=0 if following fields are valid */
unsigned long last_updated; /* In jiffies */
u8 in[7]; /* Register value */
u8 in_max[7]; /* Register value */
u8 in_min[7]; /* Register value */
u8 fan[3]; /* Register value */
u8 fan_min[3]; /* Register value */
u8 temp; /* Register value */
u8 temp_over; /* Register value */
u8 temp_hyst; /* Register value */
u8 fan_div[2]; /* Register encoding, shifted right */
u8 vid; /* Register encoding, combined */
u16 alarms; /* Register encoding, combined */
};
static int lm80_init(void);
static int lm80_cleanup(void);
static int lm80_attach_adapter(struct i2c_adapter *adapter);
static int lm80_detect_smbus(struct i2c_adapter *adapter);
static int lm80_detach_client(struct i2c_client *client);
static int lm80_detach_smbus(struct i2c_client *client);
static int lm80_new_client(struct i2c_adapter *adapter,
struct i2c_client *new_client);
static void lm80_remove_client(struct i2c_client *client);
static int lm80_command(struct i2c_client *client, unsigned int cmd,
void *arg);
static void lm80_inc_use (struct i2c_client *client);
static void lm80_dec_use (struct i2c_client *client);
static int lm80_read_value(struct i2c_client *client, u8 register);
static int lm80_write_value(struct i2c_client *client, u8 register, u8 value);
static void lm80_update_client(struct i2c_client *client);
static void lm80_init_client(struct i2c_client *client);
static void lm80_in(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results);
static void lm80_fan(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results);
static void lm80_temp(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results);
static void lm80_vid(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results);
static void lm80_alarms(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results);
static void lm80_fan_div(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results);
/* I choose here for semi-static LM80 allocation. Complete dynamic
allocation could also be used; the code needed for this would probably
take more memory than the datastructure takes now. */
#define MAX_LM80_NR 4
static struct i2c_client *lm80_list[MAX_LM80_NR];
/* The driver. I choose to use type i2c_driver, as at is identical to both
smbus_driver and isa_driver, and clients could be of either kind */
static struct i2c_driver lm80_driver = {
/* name */ "LM80 sensor driver",
/* id */ I2C_DRIVERID_LM80,
/* flags */ DF_NOTIFY,
/* attach_adapter */ &lm80_attach_adapter,
/* detach_client */ &lm80_detach_client,
/* command */ &lm80_command,
/* inc_use */ &lm80_inc_use,
/* dec_use */ &lm80_dec_use
};
/* Used by lm80_init/cleanup */
static int lm80_initialized = 0;
/* The /proc/sys entries */
/* These files are created for each detected LM80. This is just a template;
though at first sight, you might think we could use a statically
allocated list, we need some way to get back to the parent - which
is done through one of the 'extra' fields which are initialized
when a new copy is allocated. */
static ctl_table lm80_dir_table_template[] = {
{ LM80_SYSCTL_IN0, "in0", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_in },
{ LM80_SYSCTL_IN1, "in1", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_in },
{ LM80_SYSCTL_IN2, "in2", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_in },
{ LM80_SYSCTL_IN3, "in3", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_in },
{ LM80_SYSCTL_IN4, "in4", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_in },
{ LM80_SYSCTL_IN5, "in5", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_in },
{ LM80_SYSCTL_IN6, "in6", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_in },
{ LM80_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_fan },
{ LM80_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_fan },
{ LM80_SYSCTL_FAN3, "fan3", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_fan },
{ LM80_SYSCTL_TEMP, "temp", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_temp },
{ LM80_SYSCTL_VID, "vid", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_vid },
{ LM80_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_fan_div },
{ LM80_SYSCTL_ALARMS, "alarms", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_alarms },
{ 0 }
};
/* This function is called when:
* lm80_driver is inserted (when this module is loaded), for each
available adapter
* when a new adapter is inserted (and lm80_driver is still present) */
int lm80_attach_adapter(struct i2c_adapter *adapter)
{
return lm80_detect_smbus(adapter);
}
/* This function is called whenever a client should be removed:
* lm80_driver is removed (when this module is unloaded)
* when an adapter is removed which has a lm80 client (and lm80_driver
is still present). */
int lm80_detach_client(struct i2c_client *client)
{
return lm80_detach_smbus(client);
}
int lm80_detect_smbus(struct i2c_adapter *adapter)
{
int address,err;
struct i2c_client *new_client;
const char *type_name,*client_name;
/* OK, this is no detection. I know. It will do for now, though. */
err = 0;
for (address = 0x20; (! err) && (address <= 0x2f); address ++) {
/* Later on, we will keep a list of registered addresses for each
adapter, and check whether they are used here */
if (smbus_read_byte_data(adapter,address,LM80_REG_CONFIG) < 0)
continue;
/* Real detection code goes here */
err = smbus_read_byte_data(adapter,address,LM80_REG_CHIPID) & 0xfe;
printk("lm80.o: LM80 detected\n");
type_name = "lm80";
client_name = "LM80 chip";
/* Allocate space for a new client structure. To counter memory
ragmentation somewhat, we only do one kmalloc. */
if (! (new_client = kmalloc(sizeof(struct i2c_client) +
sizeof(struct lm80_data),
GFP_KERNEL))) {
err = -ENOMEM;
continue;
}
/* Fill the new client structure with data */
new_client->data = (struct lm80_data *) (new_client + 1);
new_client->addr = address;
strcpy(new_client->name,client_name);
if ((err = lm80_new_client(adapter,new_client)))
goto ERROR2;
/* Tell i2c-core a new client has arrived */
if ((err = i2c_attach_client(new_client)))
goto ERROR3;
/* Register a new directory entry with module sensors */
if ((err = sensors_register_entry(new_client,type_name,
lm80_dir_table_template)) < 0)
goto ERROR4;
((struct lm80_data *) (new_client->data))->sysctl_id = err;
err = 0;
/* Initialize the LM80 chip */
lm80_init_client(new_client);
continue;
/* OK, this is not exactly good programming practice, usually. But it is
very code-efficient in this case. */
ERROR4:
i2c_detach_client(new_client);
ERROR3:
lm80_remove_client((struct i2c_client *) new_client);
ERROR2:
kfree(new_client);
}
return err;
}
int lm80_detach_smbus(struct i2c_client *client)
{
int err,i;
for (i = 0; i < MAX_LM80_NR; i++)
if (client == lm80_list[i])
break;
if ((i == MAX_LM80_NR)) {
printk("lm80.o: Client to detach not found.\n");
return -ENOENT;
}
sensors_deregister_entry(((struct lm80_data *)(client->data))->sysctl_id);
if ((err = i2c_detach_client(client))) {
printk("lm80.o: Client deregistration failed, client not detached.\n");
return err;
}
lm80_remove_client(client);
kfree(client);
return 0;
}
/* Find a free slot, and initialize most of the fields */
int lm80_new_client(struct i2c_adapter *adapter,
struct i2c_client *new_client)
{
int i;
struct lm80_data *data;
/* First, seek out an empty slot */
for(i = 0; i < MAX_LM80_NR; i++)
if (! lm80_list[i])
break;
if (i == MAX_LM80_NR) {
printk("lm80.o: No empty slots left, recompile and heighten "
"MAX_LM80_NR!\n");
return -ENOMEM;
}
lm80_list[i] = new_client;
new_client->id = i;
new_client->adapter = adapter;
new_client->driver = &lm80_driver;
data = new_client->data;
data->valid = 0;
data->lock = MUTEX;
data->update_lock = MUTEX;
return 0;
}
/* Inverse of lm80_new_client */
void lm80_remove_client(struct i2c_client *client)
{
int i;
for (i = 0; i < MAX_LM80_NR; i++)
if (client == lm80_list[i])
lm80_list[i] = NULL;
}
/* No commands defined yet */
int lm80_command(struct i2c_client *client, unsigned int cmd, void *arg)
{
return 0;
}
/* Nothing here yet */
void lm80_inc_use (struct i2c_client *client)
{
#ifdef MODULE
MOD_INC_USE_COUNT;
#endif
}
/* Nothing here yet */
void lm80_dec_use (struct i2c_client *client)
{
#ifdef MODULE
MOD_DEC_USE_COUNT;
#endif
}
/* The SMBus locks itself, but ISA access must be locked explicitely!
We ignore the LM80 BUSY flag at this moment - it could lead to deadlocks,
would slow down the LM80 access and should not be necessary.
There are some ugly typecasts here, but the good new is - they should
nowhere else be necessary! */
int lm80_read_value(struct i2c_client *client, u8 reg)
{
int res;
if (i2c_is_isa_client(client)) {
down((struct semaphore *) (client->data));
outb_p(reg,(((struct isa_client *) client)->isa_addr) +
LM80_ADDR_REG_OFFSET);
res = inb_p((((struct isa_client *) client)->isa_addr) +
LM80_DATA_REG_OFFSET);
up((struct semaphore *) (client->data));
return res;
} else
return smbus_read_byte_data(client->adapter,client->addr, reg);
}
/* The SMBus locks itself, but ISA access muse be locked explicitely!
We ignore the LM80 BUSY flag at this moment - it could lead to deadlocks,
would slow down the LM80 access and should not be necessary.
There are some ugly typecasts here, but the good new is - they should
nowhere else be necessary! */
int lm80_write_value(struct i2c_client *client, u8 reg, u8 value)
{
if (i2c_is_isa_client(client)) {
down((struct semaphore *) (client->data));
outb_p(reg,((struct isa_client *) client)->isa_addr + LM80_ADDR_REG_OFFSET);
outb_p(value,((struct isa_client *) client)->isa_addr + LM80_DATA_REG_OFFSET);
up((struct semaphore *) (client->data));
return 0;
} else
return smbus_write_byte_data(client->adapter, client->addr, reg,value);
}
/* Called when we have found a new LM80. It should set limits, etc. */
void lm80_init_client(struct i2c_client *client)
{
int vid;
/* Reset all except Watchdog values and last conversion values
This sets fan-divs to 2, among others */
lm80_write_value(client,LM80_REG_CONFIG,0x80);
vid = lm80_read_value(client,LM80_REG_VID_FANDIV) & 0x0f;
vid |= (lm80_read_value(client,LM80_REG_CHIPID) & 0x01) >> 4;
vid = VID_FROM_REG(vid);
lm80_write_value(client,LM80_REG_IN_MIN(0),IN_TO_REG(LM80_INIT_IN_MIN_0,0));
lm80_write_value(client,LM80_REG_IN_MAX(0),IN_TO_REG(LM80_INIT_IN_MAX_0,0));
lm80_write_value(client,LM80_REG_IN_MIN(1),IN_TO_REG(LM80_INIT_IN_MIN_1,1));
lm80_write_value(client,LM80_REG_IN_MAX(1),IN_TO_REG(LM80_INIT_IN_MAX_1,1));
lm80_write_value(client,LM80_REG_IN_MIN(2),IN_TO_REG(LM80_INIT_IN_MIN_2,2));
lm80_write_value(client,LM80_REG_IN_MAX(2),IN_TO_REG(LM80_INIT_IN_MAX_2,2));
lm80_write_value(client,LM80_REG_IN_MIN(3),IN_TO_REG(LM80_INIT_IN_MIN_3,3));
lm80_write_value(client,LM80_REG_IN_MAX(3),IN_TO_REG(LM80_INIT_IN_MAX_3,3));
lm80_write_value(client,LM80_REG_IN_MIN(4),IN_TO_REG(LM80_INIT_IN_MIN_4,4));
lm80_write_value(client,LM80_REG_IN_MAX(4),IN_TO_REG(LM80_INIT_IN_MAX_4,4));
lm80_write_value(client,LM80_REG_IN_MIN(5),IN_TO_REG(LM80_INIT_IN_MIN_5,5));
lm80_write_value(client,LM80_REG_IN_MAX(5),IN_TO_REG(LM80_INIT_IN_MAX_5,5));
lm80_write_value(client,LM80_REG_IN_MIN(6),IN_TO_REG(LM80_INIT_IN_MIN_6,6));
lm80_write_value(client,LM80_REG_IN_MAX(6),IN_TO_REG(LM80_INIT_IN_MAX_6,6));
lm80_write_value(client,LM80_REG_FAN_MIN(1),FAN_TO_REG(LM80_INIT_FAN_MIN_1));
lm80_write_value(client,LM80_REG_FAN_MIN(2),FAN_TO_REG(LM80_INIT_FAN_MIN_2));
lm80_write_value(client,LM80_REG_FAN_MIN(3),FAN_TO_REG(LM80_INIT_FAN_MIN_3));
lm80_write_value(client,LM80_REG_TEMP_OVER,TEMP_TO_REG(LM80_INIT_TEMP_OVER));
lm80_write_value(client,LM80_REG_TEMP_HYST,TEMP_TO_REG(LM80_INIT_TEMP_HYST));
/* Start monitoring */
lm80_write_value(client,LM80_REG_CONFIG,
(lm80_read_value(client,LM80_REG_CONFIG) & 0xf7) | 0x01);
}
void lm80_update_client(struct i2c_client *client)
{
struct lm80_data *data = client->data;
int i;
down(&data->update_lock);
if ((jiffies - data->last_updated > HZ+HZ/2 ) ||
(jiffies < data->last_updated) || ! data->valid) {
#ifdef DEBUG
printk("Starting lm80 update\n");
#endif
for (i = 0; i <= 6; i++) {
data->in[i] = lm80_read_value(client,LM80_REG_IN(i));
data->in_min[i] = lm80_read_value(client,LM80_REG_IN_MIN(i));
data->in_max[i] = lm80_read_value(client,LM80_REG_IN_MAX(i));
}
for (i = 1; i <= 3; i++) {
data->fan[i-1] = lm80_read_value(client,LM80_REG_FAN(i));
data->fan_min[i-1] = lm80_read_value(client,LM80_REG_FAN_MIN(i));
}
data->temp = lm80_read_value(client,LM80_REG_TEMP);
data->temp_over = lm80_read_value(client,LM80_REG_TEMP_OVER);
data->temp_hyst = lm80_read_value(client,LM80_REG_TEMP_HYST);
i = lm80_read_value(client,LM80_REG_VID_FANDIV);
data->vid = i & 0x0f;
data->vid |= (lm80_read_value(client,LM80_REG_CHIPID) & 0x01) >> 4;
data->fan_div[0] = (i >> 4) & 0x03;
data->fan_div[1] = i >> 6;
data->alarms = lm80_read_value(client,LM80_REG_ALARM1) +
(lm80_read_value(client,LM80_REG_ALARM2) >> 8);
data->last_updated = jiffies;
data->valid = 1;
}
up(&data->update_lock);
}
/* The next few functions are the call-back functions of the /proc/sys and
sysctl files. Which function is used is defined in the ctl_table in
the extra1 field.
Each function must return the magnitude (power of 10 to divide the date
with) if it is called with operation==SENSORS_PROC_REAL_INFO. It must
put a maximum of *nrels elements in results reflecting the data of this
file, and set *nrels to the number it actually put in it, if operation==
SENSORS_PROC_REAL_READ. Finally, it must get upto *nrels elements from
results and write them to the chip, if operations==SENSORS_PROC_REAL_WRITE.
Note that on SENSORS_PROC_REAL_READ, I do not check whether results is
large enough (by checking the incoming value of *nrels). This is not very
good practice, but as long as you put less than about 5 values in results,
you can assume it is large enough. */
void lm80_in(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results)
{
struct lm80_data *data = client->data;
int nr = ctl_name - LM80_SYSCTL_IN0;
if (operation == SENSORS_PROC_REAL_INFO)
*nrels_mag = 2;
else if (operation == SENSORS_PROC_REAL_READ) {
lm80_update_client(client);
results[0] = IN_FROM_REG(data->in_min[nr],nr);
results[1] = IN_FROM_REG(data->in_max[nr],nr);
results[2] = IN_FROM_REG(data->in[nr],nr);
*nrels_mag = 3;
} else if (operation == SENSORS_PROC_REAL_WRITE) {
if (*nrels_mag >= 1) {
data->in_min[nr] = IN_TO_REG(results[0],nr);
lm80_write_value(client,LM80_REG_IN_MIN(nr),data->in_min[nr]);
}
if (*nrels_mag >= 2) {
data->in_max[nr] = IN_TO_REG(results[1],nr);
lm80_write_value(client,LM80_REG_IN_MAX(nr),data->in_max[nr]);
}
}
}
void lm80_fan(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results)
{
struct lm80_data *data = client->data;
int nr = ctl_name - LM80_SYSCTL_FAN1 + 1;
if (operation == SENSORS_PROC_REAL_INFO)
*nrels_mag = 0;
else if (operation == SENSORS_PROC_REAL_READ) {
lm80_update_client(client);
results[0] = FAN_FROM_REG(data->fan_min[nr-1]);
results[1] = FAN_FROM_REG(data->fan[nr-1]);
*nrels_mag = 2;
} else if (operation == SENSORS_PROC_REAL_WRITE) {
if (*nrels_mag >= 1) {
data->fan_min[nr-1] = FAN_TO_REG(results[0]);
lm80_write_value(client,LM80_REG_FAN_MIN(nr),data->fan_min[nr-1]);
}
}
}
void lm80_temp(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results)
{
struct lm80_data *data = client->data;
if (operation == SENSORS_PROC_REAL_INFO)
*nrels_mag = 1;
else if (operation == SENSORS_PROC_REAL_READ) {
lm80_update_client(client);
results[0] = TEMP_FROM_REG(data->temp_over);
results[1] = TEMP_FROM_REG(data->temp_hyst);
results[2] = TEMP_FROM_REG(data->temp);
*nrels_mag = 3;
} else if (operation == SENSORS_PROC_REAL_WRITE) {
if (*nrels_mag >= 1) {
data->temp_over = TEMP_TO_REG(results[0]);
lm80_write_value(client,LM80_REG_TEMP_OVER,data->temp_over);
}
if (*nrels_mag >= 2) {
data->temp_hyst = TEMP_TO_REG(results[1]);
lm80_write_value(client,LM80_REG_TEMP_HYST,data->temp_hyst);
}
}
}
void lm80_vid(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results)
{
struct lm80_data *data = client->data;
if (operation == SENSORS_PROC_REAL_INFO)
*nrels_mag = 2;
else if (operation == SENSORS_PROC_REAL_READ) {
lm80_update_client(client);
results[0] = VID_FROM_REG(data->vid);
*nrels_mag = 1;
}
}
void lm80_alarms(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results)
{
struct lm80_data *data = client->data;
if (operation == SENSORS_PROC_REAL_INFO)
*nrels_mag = 0;
else if (operation == SENSORS_PROC_REAL_READ) {
lm80_update_client(client);
results[0] = ALARMS_FROM_REG(data->alarms);
*nrels_mag = 1;
}
}
void lm80_fan_div(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results)
{
struct lm80_data *data = client->data;
int old;
if (operation == SENSORS_PROC_REAL_INFO)
*nrels_mag = 0;
else if (operation == SENSORS_PROC_REAL_READ) {
lm80_update_client(client);
results[0] = DIV_FROM_REG(data->fan_div[0]);
results[1] = DIV_FROM_REG(data->fan_div[1]);
results[2] = 2;
*nrels_mag = 3;
} else if (operation == SENSORS_PROC_REAL_WRITE) {
old = lm80_read_value(client,LM80_REG_VID_FANDIV);
if (*nrels_mag >= 2) {
data->fan_div[1] = DIV_TO_REG(results[1]);
old = (old & 0x3f) | (data->fan_div[1] << 6);
}
if (*nrels_mag >= 1) {
data->fan_div[0] = DIV_TO_REG(results[0]);
old = (old & 0xcf) | (data->fan_div[0] << 4);
lm80_write_value(client,LM80_REG_VID_FANDIV,old);
}
}
}
int lm80_init(void)
{
int res;
printk("lm80.o version %s (%s)\n",LM_VERSION,LM_DATE);
lm80_initialized = 0;
if ((res =i2c_add_driver(&lm80_driver))) {
printk("lm80.o: Driver registration failed, module not inserted.\n");
lm80_cleanup();
return res;
}
lm80_initialized ++;
return 0;
}
int lm80_cleanup(void)
{
int res;
if (lm80_initialized >= 1) {
if ((res = i2c_del_driver(&lm80_driver))) {
printk("lm80.o: Driver deregistration failed, module not removed.\n");
return res;
}
lm80_initialized --;
}
return 0;
}
#ifdef MODULE
MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl> and Philip Edelbrock <phil@netroedge.com>");
MODULE_DESCRIPTION("LM80 driver");
int init_module(void)
{
return lm80_init();
}
int cleanup_module(void)
{
return lm80_cleanup();
}
#endif /* MODULE */