Added additional Intel Sandy Bridge CPU power sensors.

This commit is contained in:
Michael Möller
2011-08-11 22:18:53 +00:00
parent 0645bdbd6c
commit 454962a72e

View File

@@ -55,8 +55,7 @@ namespace OpenHardwareMonitor.Hardware.CPU {
private readonly Sensor packageTemperature;
private readonly Sensor[] coreClocks;
private readonly Sensor busClock;
private readonly Sensor packagePower;
private readonly Sensor coresPower;
private readonly Sensor[] powerSensors;
private readonly Microarchitecture microarchitecture;
private readonly double timeStampCounterMultiplier;
@@ -68,15 +67,17 @@ namespace OpenHardwareMonitor.Hardware.CPU {
private const uint IA32_PACKAGE_THERM_STATUS = 0x1B1;
private const uint MSR_RAPL_POWER_UNIT = 0x606;
private const uint MSR_PKG_ENERY_STATUS = 0x611;
private const uint MSR_DRAM_ENERGY_STATUS = 0x619;
private const uint MSR_PP0_ENERY_STATUS = 0x639;
private const uint MSR_PP1_ENERY_STATUS = 0x641;
private readonly uint[] energyStatusMSRs = { MSR_PKG_ENERY_STATUS,
MSR_PP0_ENERY_STATUS, MSR_PP1_ENERY_STATUS, MSR_DRAM_ENERGY_STATUS };
private readonly string[] powerSensorLabels =
{ "CPU Package", "CPU Cores", "CPU Graphics", "CPU DRAM" };
private float energyUnitMultiplier = 0;
private DateTime lastPackageTime;
private uint lastPackageEnergyConsumed;
private DateTime lastCoresTime;
private uint lastCoresEnergyConsumed;
private DateTime[] lastEnergyTime;
private uint[] lastEnergyConsumed;
private float[] Floats(float f) {
@@ -101,8 +102,7 @@ namespace OpenHardwareMonitor.Hardware.CPU {
}
public IntelCPU(int processorIndex, CPUID[][] cpuid, ISettings settings)
: base(processorIndex, cpuid, settings)
{
: base(processorIndex, cpuid, settings) {
// set tjMax
float[] tjMax;
switch (family) {
@@ -157,7 +157,7 @@ namespace OpenHardwareMonitor.Hardware.CPU {
break;
default:
microarchitecture = Microarchitecture.Unknown;
tjMax = Floats(100);
tjMax = Floats(100);
break;
}
} break;
@@ -170,7 +170,7 @@ namespace OpenHardwareMonitor.Hardware.CPU {
case 0x04: // Pentium 4, Pentium D, Celeron D (90nm)
case 0x06: // Pentium 4, Pentium D, Celeron D (65nm)
microarchitecture = Microarchitecture.NetBurst;
tjMax = Floats(100);
tjMax = Floats(100);
break;
default:
microarchitecture = Microarchitecture.Unknown;
@@ -180,7 +180,7 @@ namespace OpenHardwareMonitor.Hardware.CPU {
} break;
default:
microarchitecture = Microarchitecture.Unknown;
tjMax = Floats(100);
tjMax = Floats(100);
break;
}
@@ -191,11 +191,11 @@ namespace OpenHardwareMonitor.Hardware.CPU {
case Microarchitecture.Core: {
uint eax, edx;
if (Ring0.Rdmsr(IA32_PERF_STATUS, out eax, out edx)) {
timeStampCounterMultiplier =
timeStampCounterMultiplier =
((edx >> 8) & 0x1f) + 0.5 * ((edx >> 14) & 1);
}
} break;
case Microarchitecture.Nehalem:
case Microarchitecture.Nehalem:
case Microarchitecture.SandyBridge: {
uint eax, edx;
if (Ring0.Rdmsr(MSR_PLATFORM_INFO, out eax, out edx)) {
@@ -214,12 +214,11 @@ namespace OpenHardwareMonitor.Hardware.CPU {
// check if processor supports a digital thermal sensor at core level
if (cpuid[0][0].Data.GetLength(0) > 6 &&
(cpuid[0][0].Data[6, 0] & 1) != 0)
{
(cpuid[0][0].Data[6, 0] & 1) != 0) {
coreTemperatures = new Sensor[coreCount];
for (int i = 0; i < coreTemperatures.Length; i++) {
coreTemperatures[i] = new Sensor(CoreString(i), i,
SensorType.Temperature, this, new [] {
SensorType.Temperature, this, new[] {
new ParameterDescription(
"TjMax [°C]", "TjMax temperature of the core sensor.\n" +
"Temperature = TjMax - TSlope * Value.", tjMax[i]),
@@ -234,10 +233,9 @@ namespace OpenHardwareMonitor.Hardware.CPU {
// check if processor supports a digital thermal sensor at package level
if (cpuid[0][0].Data.GetLength(0) > 6 &&
(cpuid[0][0].Data[6, 0] & 0x40) != 0)
{
packageTemperature = new Sensor("CPU Package",
coreTemperatures.Length, SensorType.Temperature, this, new[] {
(cpuid[0][0].Data[6, 0] & 0x40) != 0) {
packageTemperature = new Sensor("CPU Package",
coreTemperatures.Length, SensorType.Temperature, this, new[] {
new ParameterDescription(
"TjMax [°C]", "TjMax temperature of the package sensor.\n" +
"Temperature = TjMax - TSlope * Value.", tjMax[0]),
@@ -245,7 +243,7 @@ namespace OpenHardwareMonitor.Hardware.CPU {
"Temperature slope of the digital thermal sensor.\n" +
"Temperature = TjMax - TSlope * Value.", 1)}, settings);
ActivateSensor(packageTemperature);
}
}
busClock = new Sensor("Bus Speed", 0, SensorType.Clock, this, settings);
coreClocks = new Sensor[coreCount];
@@ -257,29 +255,26 @@ namespace OpenHardwareMonitor.Hardware.CPU {
}
if (microarchitecture == Microarchitecture.SandyBridge) {
powerSensors = new Sensor[energyStatusMSRs.Length];
lastEnergyTime = new DateTime[energyStatusMSRs.Length];
lastEnergyConsumed = new uint[energyStatusMSRs.Length];
uint eax, edx;
if (Ring0.Rdmsr(MSR_RAPL_POWER_UNIT, out eax, out edx))
energyUnitMultiplier = 1.0f / (1 << (int)((eax >> 8) & 0x1FF));
if (energyUnitMultiplier != 0) {
for (int i = 0; i < energyStatusMSRs.Length; i++) {
if (!Ring0.Rdmsr(energyStatusMSRs[i], out eax, out edx))
continue;
if (energyUnitMultiplier != 0 &&
Ring0.Rdmsr(MSR_PKG_ENERY_STATUS, out eax, out edx))
{
lastPackageTime = DateTime.UtcNow;
lastPackageEnergyConsumed = eax;
packagePower = new Sensor("CPU Package", 0, SensorType.Power, this,
settings);
ActivateSensor(packagePower);
}
if (energyUnitMultiplier != 0 &&
Ring0.Rdmsr(MSR_PP0_ENERY_STATUS, out eax, out edx))
{
lastCoresTime = DateTime.UtcNow;
lastCoresEnergyConsumed = eax;
coresPower = new Sensor("CPU Cores", 1, SensorType.Power, this,
settings);
ActivateSensor(coresPower);
lastEnergyTime[i] = DateTime.UtcNow;
lastEnergyConsumed[i] = eax;
powerSensors[i] = new Sensor(powerSensorLabels[i], i,
SensorType.Power, this, settings);
ActivateSensor(powerSensors[i]);
}
}
}
@@ -287,7 +282,7 @@ namespace OpenHardwareMonitor.Hardware.CPU {
}
protected override uint[] GetMSRs() {
return new [] {
return new[] {
MSR_PLATFORM_INFO,
IA32_PERF_STATUS ,
IA32_THERM_STATUS_MSR,
@@ -295,6 +290,7 @@ namespace OpenHardwareMonitor.Hardware.CPU {
IA32_PACKAGE_THERM_STATUS,
MSR_RAPL_POWER_UNIT,
MSR_PKG_ENERY_STATUS,
MSR_DRAM_ENERGY_STATUS,
MSR_PP0_ENERY_STATUS,
MSR_PP1_ENERY_STATUS
};
@@ -356,9 +352,8 @@ namespace OpenHardwareMonitor.Hardware.CPU {
for (int i = 0; i < coreClocks.Length; i++) {
System.Threading.Thread.Sleep(1);
if (Ring0.RdmsrTx(IA32_PERF_STATUS, out eax, out edx,
1UL << cpuid[i][0].Thread))
{
newBusClock =
1UL << cpuid[i][0].Thread)) {
newBusClock =
TimeStampCounterFrequency / timeStampCounterMultiplier;
switch (microarchitecture) {
case Microarchitecture.Nehalem: {
@@ -370,12 +365,12 @@ namespace OpenHardwareMonitor.Hardware.CPU {
coreClocks[i].Value = (float)(multiplier * newBusClock);
} break;
default: {
double multiplier =
double multiplier =
((eax >> 8) & 0x1f) + 0.5 * ((eax >> 14) & 1);
coreClocks[i].Value = (float)(multiplier * newBusClock);
} break;
}
} else {
}
} else {
// if IA32_PERF_STATUS is not available, assume TSC frequency
coreClocks[i].Value = (float)TimeStampCounterFrequency;
}
@@ -386,34 +381,26 @@ namespace OpenHardwareMonitor.Hardware.CPU {
}
}
if (powerSensors != null) {
foreach (Sensor sensor in powerSensors) {
if (sensor == null)
continue;
if (packagePower != null) {
uint eax, edx;
if (Ring0.Rdmsr(MSR_PKG_ENERY_STATUS, out eax, out edx)) {
DateTime time = DateTime.UtcNow;
uint energyConsumed = eax;
float deltaTime = (float)(time - lastPackageTime).TotalSeconds;
if (deltaTime > 0.01) {
packagePower.Value = energyUnitMultiplier *
unchecked(energyConsumed - lastPackageEnergyConsumed) / deltaTime;
lastPackageTime = time;
lastPackageEnergyConsumed = energyConsumed;
}
}
}
uint eax, edx;
if (!Ring0.Rdmsr(energyStatusMSRs[sensor.Index], out eax, out edx))
continue;
if (coresPower != null) {
uint eax, edx;
if (Ring0.Rdmsr(MSR_PP0_ENERY_STATUS, out eax, out edx)) {
DateTime time = DateTime.UtcNow;
uint energyConsumed = eax;
float deltaTime = (float)(time - lastCoresTime).TotalSeconds;
if (deltaTime > 0.01) {
coresPower.Value = energyUnitMultiplier *
unchecked(energyConsumed - lastCoresEnergyConsumed) / deltaTime;
lastCoresTime = time;
lastCoresEnergyConsumed = energyConsumed;
}
float deltaTime =
(float)(time - lastEnergyTime[sensor.Index]).TotalSeconds;
if (deltaTime < 0.01)
continue;
sensor.Value = energyUnitMultiplier * unchecked(
energyConsumed - lastEnergyConsumed[sensor.Index]) / deltaTime;
lastEnergyTime[sensor.Index] = time;
lastEnergyConsumed[sensor.Index] = energyConsumed;
}
}
}