2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 18:07:40 +00:00
ovs/lib/learning-switch.c

459 lines
14 KiB
C
Raw Normal View History

/*
* Copyright (c) 2008, 2009, 2010 Nicira Networks.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "learning-switch.h"
#include <errno.h>
#include <inttypes.h>
#include <netinet/in.h>
#include <stdlib.h>
#include <time.h>
#include "flow.h"
#include "hmap.h"
#include "mac-learning.h"
#include "ofpbuf.h"
#include "ofp-parse.h"
#include "ofp-print.h"
#include "ofp-util.h"
#include "openflow/openflow.h"
#include "poll-loop.h"
#include "queue.h"
#include "rconn.h"
#include "shash.h"
#include "timeval.h"
#include "vconn.h"
#include "vlog.h"
#include "xtoxll.h"
VLOG_DEFINE_THIS_MODULE(learning_switch)
struct lswitch_port {
struct hmap_node hmap_node; /* Hash node for port number. */
uint16_t port_no; /* OpenFlow port number, in host byte order. */
uint32_t queue_id; /* OpenFlow queue number. */
};
struct lswitch {
/* If nonnegative, the switch sets up flows that expire after the given
* number of seconds (or never expire, if the value is OFP_FLOW_PERMANENT).
* Otherwise, the switch processes every packet. */
int max_idle;
unsigned long long int datapath_id;
time_t last_features_request;
struct mac_learning *ml; /* NULL to act as hub instead of switch. */
uint32_t wildcards; /* Wildcards to apply to flows. */
bool action_normal; /* Use OFPP_NORMAL? */
/* Queue distribution. */
uint32_t default_queue; /* Default OpenFlow queue, or UINT32_MAX. */
struct hmap queue_numbers; /* Map from port number to lswitch_port. */
struct shash queue_names; /* Map from port name to lswitch_port. */
/* Number of outgoing queued packets on the rconn. */
struct rconn_packet_counter *queued;
};
/* The log messages here could actually be useful in debugging, so keep the
* rate limit relatively high. */
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
static void queue_tx(struct lswitch *, struct rconn *, struct ofpbuf *);
static void send_features_request(struct lswitch *, struct rconn *);
typedef void packet_handler_func(struct lswitch *, struct rconn *, void *);
static packet_handler_func process_switch_features;
static packet_handler_func process_packet_in;
static packet_handler_func process_echo_request;
/* Creates and returns a new learning switch whose configuration is given by
* 'cfg'.
*
* 'rconn' is used to send out an OpenFlow features request. */
struct lswitch *
lswitch_create(struct rconn *rconn, const struct lswitch_config *cfg)
{
const struct ofpbuf *b;
struct lswitch *sw;
sw = xzalloc(sizeof *sw);
sw->max_idle = cfg->max_idle;
sw->datapath_id = 0;
sw->last_features_request = time_now() - 1;
sw->ml = cfg->mode == LSW_LEARN ? mac_learning_create() : NULL;
sw->action_normal = cfg->mode == LSW_NORMAL;
if (cfg->exact_flows) {
/* Exact match. */
sw->wildcards = 0;
} else {
/* We cannot wildcard all fields.
* We need in_port to detect moves.
* We need both SA and DA to do learning. */
sw->wildcards = (OFPFW_DL_TYPE | OFPFW_NW_SRC_MASK | OFPFW_NW_DST_MASK
| OFPFW_NW_PROTO | OFPFW_TP_SRC | OFPFW_TP_DST);
}
sw->default_queue = cfg->default_queue;
hmap_init(&sw->queue_numbers);
shash_init(&sw->queue_names);
if (cfg->port_queues) {
struct shash_node *node;
SHASH_FOR_EACH (node, cfg->port_queues) {
struct lswitch_port *port = xmalloc(sizeof *port);
hmap_node_nullify(&port->hmap_node);
port->queue_id = (uintptr_t) node->data;
shash_add(&sw->queue_names, node->name, port);
}
}
sw->queued = rconn_packet_counter_create();
send_features_request(sw, rconn);
for (b = cfg->default_flows; b; b = b->next) {
queue_tx(sw, rconn, ofpbuf_clone(b));
}
return sw;
}
/* Destroys 'sw'. */
void
lswitch_destroy(struct lswitch *sw)
{
if (sw) {
struct lswitch_port *node, *next;
HMAP_FOR_EACH_SAFE (node, next, hmap_node, &sw->queue_numbers) {
hmap_remove(&sw->queue_numbers, &node->hmap_node);
free(node);
}
shash_destroy(&sw->queue_names);
mac_learning_destroy(sw->ml);
rconn_packet_counter_destroy(sw->queued);
free(sw);
}
}
/* Takes care of necessary 'sw' activity, except for receiving packets (which
* the caller must do). */
void
lswitch_run(struct lswitch *sw)
{
if (sw->ml) {
mac_learning_run(sw->ml, NULL);
}
}
void
lswitch_wait(struct lswitch *sw)
{
if (sw->ml) {
mac_learning_wait(sw->ml);
}
}
/* Processes 'msg', which should be an OpenFlow received on 'rconn', according
* to the learning switch state in 'sw'. The most likely result of processing
* is that flow-setup and packet-out OpenFlow messages will be sent out on
* 'rconn'. */
void
lswitch_process_packet(struct lswitch *sw, struct rconn *rconn,
const struct ofpbuf *msg)
{
struct processor {
uint8_t type;
size_t min_size;
packet_handler_func *handler;
};
static const struct processor processors[] = {
{
OFPT_ECHO_REQUEST,
sizeof(struct ofp_header),
process_echo_request
},
{
OFPT_FEATURES_REPLY,
sizeof(struct ofp_switch_features),
process_switch_features
},
{
OFPT_PACKET_IN,
offsetof(struct ofp_packet_in, data),
process_packet_in
},
{
OFPT_FLOW_REMOVED,
sizeof(struct ofp_flow_removed),
NULL
},
};
const size_t n_processors = ARRAY_SIZE(processors);
const struct processor *p;
struct ofp_header *oh;
oh = msg->data;
if (sw->datapath_id == 0
&& oh->type != OFPT_ECHO_REQUEST
&& oh->type != OFPT_FEATURES_REPLY) {
send_features_request(sw, rconn);
return;
}
for (p = processors; p < &processors[n_processors]; p++) {
if (oh->type == p->type) {
if (msg->size < p->min_size) {
VLOG_WARN_RL(&rl, "%016llx: %s: too short (%zu bytes) for "
"type %"PRIu8" (min %zu)", sw->datapath_id,
rconn_get_name(rconn), msg->size, oh->type,
p->min_size);
return;
}
if (p->handler) {
(p->handler)(sw, rconn, msg->data);
}
return;
}
}
if (VLOG_IS_DBG_ENABLED()) {
char *s = ofp_to_string(msg->data, msg->size, 2);
VLOG_DBG_RL(&rl, "%016llx: OpenFlow packet ignored: %s",
sw->datapath_id, s);
free(s);
}
}
static void
send_features_request(struct lswitch *sw, struct rconn *rconn)
{
time_t now = time_now();
if (now >= sw->last_features_request + 1) {
struct ofpbuf *b;
struct ofp_switch_config *osc;
/* Send OFPT_FEATURES_REQUEST. */
make_openflow(sizeof(struct ofp_header), OFPT_FEATURES_REQUEST, &b);
queue_tx(sw, rconn, b);
/* Send OFPT_SET_CONFIG. */
osc = make_openflow(sizeof *osc, OFPT_SET_CONFIG, &b);
osc->miss_send_len = htons(OFP_DEFAULT_MISS_SEND_LEN);
queue_tx(sw, rconn, b);
sw->last_features_request = now;
}
}
static void
queue_tx(struct lswitch *sw, struct rconn *rconn, struct ofpbuf *b)
{
int retval = rconn_send_with_limit(rconn, b, sw->queued, 10);
if (retval && retval != ENOTCONN) {
if (retval == EAGAIN) {
VLOG_INFO_RL(&rl, "%016llx: %s: tx queue overflow",
sw->datapath_id, rconn_get_name(rconn));
} else {
VLOG_WARN_RL(&rl, "%016llx: %s: send: %s",
sw->datapath_id, rconn_get_name(rconn),
strerror(retval));
}
}
}
static void
process_switch_features(struct lswitch *sw, struct rconn *rconn OVS_UNUSED,
void *osf_)
{
struct ofp_switch_features *osf = osf_;
size_t n_ports;
size_t i;
if (check_ofp_message_array(&osf->header, OFPT_FEATURES_REPLY,
sizeof *osf, sizeof *osf->ports, &n_ports)) {
return;
}
sw->datapath_id = ntohll(osf->datapath_id);
for (i = 0; i < n_ports; i++) {
struct ofp_phy_port *opp = &osf->ports[i];
struct lswitch_port *lp;
opp->name[OFP_MAX_PORT_NAME_LEN - 1] = '\0';
lp = shash_find_data(&sw->queue_names, (char *) opp->name);
if (lp && hmap_node_is_null(&lp->hmap_node)) {
lp->port_no = ntohs(opp->port_no);
hmap_insert(&sw->queue_numbers, &lp->hmap_node,
hash_int(lp->port_no, 0));
}
}
}
static uint16_t
lswitch_choose_destination(struct lswitch *sw, const flow_t *flow)
{
uint16_t out_port;
/* Learn the source MAC. */
if (sw->ml) {
if (mac_learning_learn(sw->ml, flow->dl_src, 0, flow->in_port,
GRAT_ARP_LOCK_NONE)) {
VLOG_DBG_RL(&rl, "%016llx: learned that "ETH_ADDR_FMT" is on "
"port %"PRIu16, sw->datapath_id,
ETH_ADDR_ARGS(flow->dl_src), flow->in_port);
}
}
/* Drop frames for reserved multicast addresses. */
if (eth_addr_is_reserved(flow->dl_dst)) {
return OFPP_NONE;
}
out_port = OFPP_FLOOD;
if (sw->ml) {
int learned_port = mac_learning_lookup(sw->ml, flow->dl_dst, 0, NULL);
if (learned_port >= 0) {
out_port = learned_port;
if (out_port == flow->in_port) {
/* Don't send a packet back out its input port. */
return OFPP_NONE;
}
}
}
/* Check if we need to use "NORMAL" action. */
if (sw->action_normal && out_port != OFPP_FLOOD) {
return OFPP_NORMAL;
}
return out_port;
}
static uint32_t
get_queue_id(const struct lswitch *sw, uint16_t in_port)
{
const struct lswitch_port *port;
HMAP_FOR_EACH_WITH_HASH (port, hmap_node, hash_int(in_port, 0),
&sw->queue_numbers) {
if (port->port_no == in_port) {
return port->queue_id;
}
}
return sw->default_queue;
}
static void
process_packet_in(struct lswitch *sw, struct rconn *rconn, void *opi_)
{
struct ofp_packet_in *opi = opi_;
uint16_t in_port = ntohs(opi->in_port);
uint32_t queue_id;
uint16_t out_port;
struct ofp_action_header actions[2];
size_t actions_len;
size_t pkt_ofs, pkt_len;
struct ofpbuf pkt;
flow_t flow;
/* Ignore packets sent via output to OFPP_CONTROLLER. This library never
* uses such an action. You never know what experiments might be going on,
* though, and it seems best not to interfere with them. */
if (opi->reason != OFPR_NO_MATCH) {
return;
}
/* Extract flow data from 'opi' into 'flow'. */
pkt_ofs = offsetof(struct ofp_packet_in, data);
pkt_len = ntohs(opi->header.length) - pkt_ofs;
pkt.data = opi->data;
pkt.size = pkt_len;
flow_extract(&pkt, 0, in_port, &flow);
/* Choose output port. */
out_port = lswitch_choose_destination(sw, &flow);
/* Make actions. */
queue_id = get_queue_id(sw, in_port);
if (out_port == OFPP_NONE) {
actions_len = 0;
} else if (queue_id == UINT32_MAX || out_port >= OFPP_MAX) {
struct ofp_action_output oao;
memset(&oao, 0, sizeof oao);
oao.type = htons(OFPAT_OUTPUT);
oao.len = htons(sizeof oao);
oao.port = htons(out_port);
memcpy(actions, &oao, sizeof oao);
actions_len = sizeof oao;
} else {
struct ofp_action_enqueue oae;
memset(&oae, 0, sizeof oae);
oae.type = htons(OFPAT_ENQUEUE);
oae.len = htons(sizeof oae);
oae.port = htons(out_port);
oae.queue_id = htonl(queue_id);
memcpy(actions, &oae, sizeof oae);
actions_len = sizeof oae;
}
assert(actions_len <= sizeof actions);
/* Send the packet, and possibly the whole flow, to the output port. */
if (sw->max_idle >= 0 && (!sw->ml || out_port != OFPP_FLOOD)) {
struct ofpbuf *buffer;
struct ofp_flow_mod *ofm;
/* The output port is known, or we always flood everything, so add a
* new flow. */
buffer = make_add_flow(&flow, ntohl(opi->buffer_id),
sw->max_idle, actions_len);
ofpbuf_put(buffer, actions, actions_len);
ofm = buffer->data;
ofm->match.wildcards = htonl(sw->wildcards);
queue_tx(sw, rconn, buffer);
/* If the switch didn't buffer the packet, we need to send a copy. */
if (ntohl(opi->buffer_id) == UINT32_MAX && actions_len > 0) {
queue_tx(sw, rconn,
make_packet_out(&pkt, UINT32_MAX, in_port,
actions, actions_len / sizeof *actions));
}
} else {
/* We don't know that MAC, or we don't set up flows. Send along the
* packet without setting up a flow. */
if (ntohl(opi->buffer_id) != UINT32_MAX || actions_len > 0) {
queue_tx(sw, rconn,
make_packet_out(&pkt, ntohl(opi->buffer_id), in_port,
actions, actions_len / sizeof *actions));
}
}
}
static void
process_echo_request(struct lswitch *sw, struct rconn *rconn, void *rq_)
{
struct ofp_header *rq = rq_;
queue_tx(sw, rconn, make_echo_reply(rq));
}