2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-24 02:47:14 +00:00
ovs/tests/test-classifier.c

901 lines
27 KiB
C
Raw Normal View History

/*
* Copyright (c) 2009, 2010 Nicira Networks.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* "White box" tests for classifier.
*
* With very few exceptions, these tests obtain complete coverage of every
* basic block and every branch in the classifier implementation, e.g. a clean
* report from "gcov -b". (Covering the exceptions would require finding
* collisions in the hash function used for flow data, etc.)
*
* This test should receive a clean report from "valgrind --leak-check=full":
* it frees every heap block that it allocates.
*/
#include <config.h>
#include "classifier.h"
#include <errno.h>
#include <limits.h>
#include "byte-order.h"
#include "command-line.h"
#include "flow.h"
#include "ofp-util.h"
#include "packets.h"
#include "unaligned.h"
#undef NDEBUG
#include <assert.h>
/* Fields in a rule. */
#define CLS_FIELDS \
/* struct flow all-caps */ \
/* FWW_* bit(s) member name name */ \
/* -------------------------- ----------- -------- */ \
CLS_FIELD(FWW_TUN_ID, tun_id, TUN_ID) \
CLS_FIELD(0, nw_src, NW_SRC) \
CLS_FIELD(0, nw_dst, NW_DST) \
CLS_FIELD(FWW_IN_PORT, in_port, IN_PORT) \
CLS_FIELD(FWW_DL_VLAN, dl_vlan, DL_VLAN) \
CLS_FIELD(FWW_DL_TYPE, dl_type, DL_TYPE) \
CLS_FIELD(FWW_TP_SRC, tp_src, TP_SRC) \
CLS_FIELD(FWW_TP_DST, tp_dst, TP_DST) \
CLS_FIELD(FWW_DL_SRC, dl_src, DL_SRC) \
CLS_FIELD(FWW_DL_DST | FWW_ETH_MCAST, dl_dst, DL_DST) \
CLS_FIELD(FWW_NW_PROTO, nw_proto, NW_PROTO) \
CLS_FIELD(FWW_DL_VLAN_PCP, dl_vlan_pcp, DL_VLAN_PCP) \
CLS_FIELD(FWW_NW_TOS, nw_tos, NW_TOS)
/* Field indexes.
*
* (These are also indexed into struct classifier's 'tables' array.) */
enum {
#define CLS_FIELD(WILDCARDS, MEMBER, NAME) CLS_F_IDX_##NAME,
CLS_FIELDS
#undef CLS_FIELD
CLS_N_FIELDS
};
/* Field information. */
struct cls_field {
int ofs; /* Offset in struct flow. */
int len; /* Length in bytes. */
flow_wildcards_t wildcards; /* FWW_* bit or bits for this field. */
const char *name; /* Name (for debugging). */
};
static const struct cls_field cls_fields[CLS_N_FIELDS] = {
#define CLS_FIELD(WILDCARDS, MEMBER, NAME) \
{ offsetof(struct flow, MEMBER), \
sizeof ((struct flow *)0)->MEMBER, \
WILDCARDS, \
#NAME },
CLS_FIELDS
#undef CLS_FIELD
};
struct test_rule {
int aux; /* Auxiliary data. */
struct cls_rule cls_rule; /* Classifier rule data. */
};
static struct test_rule *
test_rule_from_cls_rule(const struct cls_rule *rule)
{
return rule ? CONTAINER_OF(rule, struct test_rule, cls_rule) : NULL;
}
/* Trivial (linear) classifier. */
struct tcls {
size_t n_rules;
size_t allocated_rules;
struct test_rule **rules;
};
static void
tcls_init(struct tcls *tcls)
{
tcls->n_rules = 0;
tcls->allocated_rules = 0;
tcls->rules = NULL;
}
static void
tcls_destroy(struct tcls *tcls)
{
if (tcls) {
size_t i;
for (i = 0; i < tcls->n_rules; i++) {
free(tcls->rules[i]);
}
free(tcls->rules);
}
}
static bool
tcls_is_empty(const struct tcls *tcls)
{
return tcls->n_rules == 0;
}
static struct test_rule *
tcls_insert(struct tcls *tcls, const struct test_rule *rule)
{
size_t i;
assert(!flow_wildcards_is_exact(&rule->cls_rule.wc)
|| rule->cls_rule.priority == UINT_MAX);
for (i = 0; i < tcls->n_rules; i++) {
const struct cls_rule *pos = &tcls->rules[i]->cls_rule;
if (cls_rule_equal(pos, &rule->cls_rule)) {
/* Exact match. */
free(tcls->rules[i]);
tcls->rules[i] = xmemdup(rule, sizeof *rule);
return tcls->rules[i];
} else if (pos->priority < rule->cls_rule.priority) {
break;
}
}
if (tcls->n_rules >= tcls->allocated_rules) {
tcls->rules = x2nrealloc(tcls->rules, &tcls->allocated_rules,
sizeof *tcls->rules);
}
if (i != tcls->n_rules) {
memmove(&tcls->rules[i + 1], &tcls->rules[i],
sizeof *tcls->rules * (tcls->n_rules - i));
}
tcls->rules[i] = xmemdup(rule, sizeof *rule);
tcls->n_rules++;
return tcls->rules[i];
}
static void
tcls_remove(struct tcls *cls, const struct test_rule *rule)
{
size_t i;
for (i = 0; i < cls->n_rules; i++) {
struct test_rule *pos = cls->rules[i];
if (pos == rule) {
free(pos);
memmove(&cls->rules[i], &cls->rules[i + 1],
sizeof *cls->rules * (cls->n_rules - i - 1));
cls->n_rules--;
return;
}
}
NOT_REACHED();
}
static bool
match(const struct cls_rule *wild, const struct flow *fixed)
{
int f_idx;
for (f_idx = 0; f_idx < CLS_N_FIELDS; f_idx++) {
const struct cls_field *f = &cls_fields[f_idx];
bool eq;
if (f->wildcards) {
void *wild_field = (char *) &wild->flow + f->ofs;
void *fixed_field = (char *) fixed + f->ofs;
eq = ((wild->wc.wildcards & f->wildcards) == f->wildcards
|| !memcmp(wild_field, fixed_field, f->len));
} else if (f_idx == CLS_F_IDX_NW_SRC) {
eq = !((fixed->nw_src ^ wild->flow.nw_src) & wild->wc.nw_src_mask);
} else if (f_idx == CLS_F_IDX_NW_DST) {
eq = !((fixed->nw_dst ^ wild->flow.nw_dst) & wild->wc.nw_dst_mask);
} else {
NOT_REACHED();
}
if (!eq) {
return false;
}
}
return true;
}
static struct cls_rule *
tcls_lookup(const struct tcls *cls, const struct flow *flow)
{
size_t i;
for (i = 0; i < cls->n_rules; i++) {
struct test_rule *pos = cls->rules[i];
if (match(&pos->cls_rule, flow)) {
return &pos->cls_rule;
}
}
return NULL;
}
static void
tcls_delete_matches(struct tcls *cls, const struct cls_rule *target)
{
size_t i;
for (i = 0; i < cls->n_rules; ) {
struct test_rule *pos = cls->rules[i];
if (!flow_wildcards_has_extra(&pos->cls_rule.wc, &target->wc)
&& match(target, &pos->cls_rule.flow)) {
tcls_remove(cls, pos);
} else {
i++;
}
}
}
static ovs_be32 nw_src_values[] = { CONSTANT_HTONL(0xc0a80001),
CONSTANT_HTONL(0xc0a04455) };
static ovs_be32 nw_dst_values[] = { CONSTANT_HTONL(0xc0a80002),
CONSTANT_HTONL(0xc0a04455) };
static ovs_be32 tun_id_values[] = { 0, 0xffff0000 };
static uint16_t in_port_values[] = { 1, ODPP_LOCAL };
static ovs_be16 dl_vlan_values[] = { CONSTANT_HTONS(101), CONSTANT_HTONS(0) };
static uint8_t dl_vlan_pcp_values[] = { 7, 0 };
static ovs_be16 dl_type_values[]
= { CONSTANT_HTONS(ETH_TYPE_IP), CONSTANT_HTONS(ETH_TYPE_ARP) };
static ovs_be16 tp_src_values[] = { CONSTANT_HTONS(49362),
CONSTANT_HTONS(80) };
static ovs_be16 tp_dst_values[] = { CONSTANT_HTONS(6667), CONSTANT_HTONS(22) };
static uint8_t dl_src_values[][6] = { { 0x00, 0x02, 0xe3, 0x0f, 0x80, 0xa4 },
{ 0x5e, 0x33, 0x7f, 0x5f, 0x1e, 0x99 } };
static uint8_t dl_dst_values[][6] = { { 0x4a, 0x27, 0x71, 0xae, 0x64, 0xc1 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff } };
static uint8_t nw_proto_values[] = { IP_TYPE_TCP, IP_TYPE_ICMP };
static uint8_t nw_tos_values[] = { 49, 0 };
static void *values[CLS_N_FIELDS][2];
static void
init_values(void)
{
values[CLS_F_IDX_TUN_ID][0] = &tun_id_values[0];
values[CLS_F_IDX_TUN_ID][1] = &tun_id_values[1];
values[CLS_F_IDX_IN_PORT][0] = &in_port_values[0];
values[CLS_F_IDX_IN_PORT][1] = &in_port_values[1];
values[CLS_F_IDX_DL_VLAN][0] = &dl_vlan_values[0];
values[CLS_F_IDX_DL_VLAN][1] = &dl_vlan_values[1];
values[CLS_F_IDX_DL_VLAN_PCP][0] = &dl_vlan_pcp_values[0];
values[CLS_F_IDX_DL_VLAN_PCP][1] = &dl_vlan_pcp_values[1];
values[CLS_F_IDX_DL_SRC][0] = dl_src_values[0];
values[CLS_F_IDX_DL_SRC][1] = dl_src_values[1];
values[CLS_F_IDX_DL_DST][0] = dl_dst_values[0];
values[CLS_F_IDX_DL_DST][1] = dl_dst_values[1];
values[CLS_F_IDX_DL_TYPE][0] = &dl_type_values[0];
values[CLS_F_IDX_DL_TYPE][1] = &dl_type_values[1];
values[CLS_F_IDX_NW_SRC][0] = &nw_src_values[0];
values[CLS_F_IDX_NW_SRC][1] = &nw_src_values[1];
values[CLS_F_IDX_NW_DST][0] = &nw_dst_values[0];
values[CLS_F_IDX_NW_DST][1] = &nw_dst_values[1];
values[CLS_F_IDX_NW_PROTO][0] = &nw_proto_values[0];
values[CLS_F_IDX_NW_PROTO][1] = &nw_proto_values[1];
values[CLS_F_IDX_NW_TOS][0] = &nw_tos_values[0];
values[CLS_F_IDX_NW_TOS][1] = &nw_tos_values[1];
values[CLS_F_IDX_TP_SRC][0] = &tp_src_values[0];
values[CLS_F_IDX_TP_SRC][1] = &tp_src_values[1];
values[CLS_F_IDX_TP_DST][0] = &tp_dst_values[0];
values[CLS_F_IDX_TP_DST][1] = &tp_dst_values[1];
}
#define N_NW_SRC_VALUES ARRAY_SIZE(nw_src_values)
#define N_NW_DST_VALUES ARRAY_SIZE(nw_dst_values)
#define N_TUN_ID_VALUES ARRAY_SIZE(tun_id_values)
#define N_IN_PORT_VALUES ARRAY_SIZE(in_port_values)
#define N_DL_VLAN_VALUES ARRAY_SIZE(dl_vlan_values)
#define N_DL_VLAN_PCP_VALUES ARRAY_SIZE(dl_vlan_pcp_values)
#define N_DL_TYPE_VALUES ARRAY_SIZE(dl_type_values)
#define N_TP_SRC_VALUES ARRAY_SIZE(tp_src_values)
#define N_TP_DST_VALUES ARRAY_SIZE(tp_dst_values)
#define N_DL_SRC_VALUES ARRAY_SIZE(dl_src_values)
#define N_DL_DST_VALUES ARRAY_SIZE(dl_dst_values)
#define N_NW_PROTO_VALUES ARRAY_SIZE(nw_proto_values)
#define N_NW_TOS_VALUES ARRAY_SIZE(nw_tos_values)
#define N_FLOW_VALUES (N_NW_SRC_VALUES * \
N_NW_DST_VALUES * \
N_TUN_ID_VALUES * \
N_IN_PORT_VALUES * \
N_DL_VLAN_VALUES * \
N_DL_VLAN_PCP_VALUES * \
N_DL_TYPE_VALUES * \
N_TP_SRC_VALUES * \
N_TP_DST_VALUES * \
N_DL_SRC_VALUES * \
N_DL_DST_VALUES * \
N_NW_PROTO_VALUES * \
N_NW_TOS_VALUES)
static unsigned int
get_value(unsigned int *x, unsigned n_values)
{
unsigned int rem = *x % n_values;
*x /= n_values;
return rem;
}
static void
compare_classifiers(struct classifier *cls, struct tcls *tcls)
{
static const int confidence = 500;
unsigned int i;
assert(classifier_count(cls) == tcls->n_rules);
for (i = 0; i < confidence; i++) {
struct cls_rule *cr0, *cr1;
struct flow flow;
unsigned int x;
x = rand () % N_FLOW_VALUES;
flow.nw_src = nw_src_values[get_value(&x, N_NW_SRC_VALUES)];
flow.nw_dst = nw_dst_values[get_value(&x, N_NW_DST_VALUES)];
flow.tun_id = tun_id_values[get_value(&x, N_TUN_ID_VALUES)];
flow.in_port = in_port_values[get_value(&x, N_IN_PORT_VALUES)];
flow.dl_vlan = dl_vlan_values[get_value(&x, N_DL_VLAN_VALUES)];
flow.dl_vlan_pcp = dl_vlan_pcp_values[get_value(&x,
N_DL_VLAN_PCP_VALUES)];
flow.dl_type = dl_type_values[get_value(&x, N_DL_TYPE_VALUES)];
flow.tp_src = tp_src_values[get_value(&x, N_TP_SRC_VALUES)];
flow.tp_dst = tp_dst_values[get_value(&x, N_TP_DST_VALUES)];
memcpy(flow.dl_src, dl_src_values[get_value(&x, N_DL_SRC_VALUES)],
ETH_ADDR_LEN);
memcpy(flow.dl_dst, dl_dst_values[get_value(&x, N_DL_DST_VALUES)],
ETH_ADDR_LEN);
flow.nw_proto = nw_proto_values[get_value(&x, N_NW_PROTO_VALUES)];
flow.nw_tos = nw_tos_values[get_value(&x, N_NW_TOS_VALUES)];
cr0 = classifier_lookup(cls, &flow);
cr1 = tcls_lookup(tcls, &flow);
assert((cr0 == NULL) == (cr1 == NULL));
if (cr0 != NULL) {
const struct test_rule *tr0 = test_rule_from_cls_rule(cr0);
const struct test_rule *tr1 = test_rule_from_cls_rule(cr1);
assert(cls_rule_equal(cr0, cr1));
assert(tr0->aux == tr1->aux);
}
}
}
static void
destroy_classifier(struct classifier *cls)
{
struct test_rule *rule, *next_rule;
struct cls_cursor cursor;
cls_cursor_init(&cursor, cls, NULL);
CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cls_rule, &cursor) {
classifier_remove(cls, &rule->cls_rule);
free(rule);
}
classifier_destroy(cls);
}
static void
check_tables(const struct classifier *cls,
int n_tables, int n_rules, int n_dups)
{
const struct cls_table *table;
struct flow_wildcards exact_wc;
struct test_rule *test_rule;
struct cls_cursor cursor;
int found_tables = 0;
int found_rules = 0;
int found_dups = 0;
int found_rules2 = 0;
flow_wildcards_init_exact(&exact_wc);
HMAP_FOR_EACH (table, hmap_node, &cls->tables) {
const struct cls_rule *head;
assert(!hmap_is_empty(&table->rules));
found_tables++;
HMAP_FOR_EACH (head, hmap_node, &table->rules) {
unsigned int prev_priority = UINT_MAX;
const struct cls_rule *rule;
found_rules++;
LIST_FOR_EACH (rule, list, &head->list) {
assert(rule->priority < prev_priority);
prev_priority = rule->priority;
found_rules++;
found_dups++;
assert(classifier_find_rule_exactly(cls, rule) == rule);
}
}
}
assert(found_tables == hmap_count(&cls->tables));
assert(n_tables == -1 || n_tables == hmap_count(&cls->tables));
assert(n_rules == -1 || found_rules == n_rules);
assert(n_dups == -1 || found_dups == n_dups);
cls_cursor_init(&cursor, cls, NULL);
CLS_CURSOR_FOR_EACH (test_rule, cls_rule, &cursor) {
found_rules2++;
}
assert(found_rules == found_rules2);
}
static struct test_rule *
make_rule(int wc_fields, unsigned int priority, int value_pat)
{
const struct cls_field *f;
struct test_rule *rule;
rule = xzalloc(sizeof *rule);
cls_rule_init_catchall(&rule->cls_rule, wc_fields ? priority : UINT_MAX);
for (f = &cls_fields[0]; f < &cls_fields[CLS_N_FIELDS]; f++) {
int f_idx = f - cls_fields;
int value_idx = (value_pat & (1u << f_idx)) != 0;
memcpy((char *) &rule->cls_rule.flow + f->ofs,
values[f_idx][value_idx], f->len);
if (f->wildcards) {
rule->cls_rule.wc.wildcards &= ~f->wildcards;
} else if (f_idx == CLS_F_IDX_NW_SRC) {
rule->cls_rule.wc.nw_src_mask = htonl(UINT32_MAX);
} else if (f_idx == CLS_F_IDX_NW_DST) {
rule->cls_rule.wc.nw_dst_mask = htonl(UINT32_MAX);
} else {
NOT_REACHED();
}
}
return rule;
}
static void
shuffle(unsigned int *p, size_t n)
{
for (; n > 1; n--, p++) {
unsigned int *q = &p[rand() % n];
unsigned int tmp = *p;
*p = *q;
*q = tmp;
}
}
/* Tests an empty classifier. */
static void
test_empty(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
{
struct classifier cls;
struct tcls tcls;
classifier_init(&cls);
tcls_init(&tcls);
assert(classifier_is_empty(&cls));
assert(tcls_is_empty(&tcls));
compare_classifiers(&cls, &tcls);
classifier_destroy(&cls);
tcls_destroy(&tcls);
}
/* Destroys a null classifier. */
static void
test_destroy_null(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
{
classifier_destroy(NULL);
}
/* Tests classification with one rule at a time. */
static void
test_single_rule(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
{
unsigned int wc_fields; /* Hilarious. */
for (wc_fields = 0; wc_fields < (1u << CLS_N_FIELDS); wc_fields++) {
struct classifier cls;
struct test_rule *rule, *tcls_rule;
struct tcls tcls;
rule = make_rule(wc_fields,
hash_bytes(&wc_fields, sizeof wc_fields, 0), 0);
classifier_init(&cls);
tcls_init(&tcls);
tcls_rule = tcls_insert(&tcls, rule);
assert(!classifier_insert(&cls, &rule->cls_rule));
check_tables(&cls, 1, 1, 0);
compare_classifiers(&cls, &tcls);
classifier_remove(&cls, &rule->cls_rule);
tcls_remove(&tcls, tcls_rule);
assert(classifier_is_empty(&cls));
assert(tcls_is_empty(&tcls));
compare_classifiers(&cls, &tcls);
free(rule);
classifier_destroy(&cls);
tcls_destroy(&tcls);
}
}
/* Tests replacing one rule by another. */
static void
test_rule_replacement(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
{
unsigned int wc_fields;
for (wc_fields = 0; wc_fields < (1u << CLS_N_FIELDS); wc_fields++) {
struct classifier cls;
struct test_rule *rule1;
struct test_rule *rule2;
struct tcls tcls;
rule1 = make_rule(wc_fields, OFP_DEFAULT_PRIORITY, UINT_MAX);
rule2 = make_rule(wc_fields, OFP_DEFAULT_PRIORITY, UINT_MAX);
rule2->aux += 5;
rule2->aux += 5;
classifier_init(&cls);
tcls_init(&tcls);
tcls_insert(&tcls, rule1);
assert(!classifier_insert(&cls, &rule1->cls_rule));
check_tables(&cls, 1, 1, 0);
compare_classifiers(&cls, &tcls);
tcls_destroy(&tcls);
tcls_init(&tcls);
tcls_insert(&tcls, rule2);
assert(test_rule_from_cls_rule(
classifier_insert(&cls, &rule2->cls_rule)) == rule1);
free(rule1);
check_tables(&cls, 1, 1, 0);
compare_classifiers(&cls, &tcls);
tcls_destroy(&tcls);
destroy_classifier(&cls);
}
}
static int
factorial(int n_items)
{
int n, i;
n = 1;
for (i = 2; i <= n_items; i++) {
n *= i;
}
return n;
}
static void
swap(int *a, int *b)
{
int tmp = *a;
*a = *b;
*b = tmp;
}
static void
reverse(int *a, int n)
{
int i;
for (i = 0; i < n / 2; i++) {
int j = n - (i + 1);
swap(&a[i], &a[j]);
}
}
static bool
next_permutation(int *a, int n)
{
int k;
for (k = n - 2; k >= 0; k--) {
if (a[k] < a[k + 1]) {
int l;
for (l = n - 1; ; l--) {
if (a[l] > a[k]) {
swap(&a[k], &a[l]);
reverse(a + (k + 1), n - (k + 1));
return true;
}
}
}
}
return false;
}
/* Tests classification with rules that have the same matching criteria. */
static void
test_many_rules_in_one_list (int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
{
enum { N_RULES = 3 };
int n_pris;
for (n_pris = N_RULES; n_pris >= 1; n_pris--) {
int ops[N_RULES * 2];
int pris[N_RULES];
int n_permutations;
int i;
pris[0] = 0;
for (i = 1; i < N_RULES; i++) {
pris[i] = pris[i - 1] + (n_pris > i);
}
for (i = 0; i < N_RULES * 2; i++) {
ops[i] = i / 2;
}
n_permutations = 0;
do {
struct test_rule *rules[N_RULES];
struct test_rule *tcls_rules[N_RULES];
int pri_rules[N_RULES];
struct classifier cls;
struct tcls tcls;
n_permutations++;
for (i = 0; i < N_RULES; i++) {
rules[i] = make_rule(456, pris[i], 0);
tcls_rules[i] = NULL;
pri_rules[i] = -1;
}
classifier_init(&cls);
tcls_init(&tcls);
for (i = 0; i < ARRAY_SIZE(ops); i++) {
int j = ops[i];
int m, n;
if (!tcls_rules[j]) {
struct test_rule *displaced_rule;
tcls_rules[j] = tcls_insert(&tcls, rules[j]);
displaced_rule = test_rule_from_cls_rule(
classifier_insert(&cls, &rules[j]->cls_rule));
if (pri_rules[pris[j]] >= 0) {
int k = pri_rules[pris[j]];
assert(displaced_rule != NULL);
assert(displaced_rule != rules[j]);
assert(pris[j] == displaced_rule->cls_rule.priority);
tcls_rules[k] = NULL;
} else {
assert(displaced_rule == NULL);
}
pri_rules[pris[j]] = j;
} else {
classifier_remove(&cls, &rules[j]->cls_rule);
tcls_remove(&tcls, tcls_rules[j]);
tcls_rules[j] = NULL;
pri_rules[pris[j]] = -1;
}
n = 0;
for (m = 0; m < N_RULES; m++) {
n += tcls_rules[m] != NULL;
}
check_tables(&cls, n > 0, n, n - 1);
compare_classifiers(&cls, &tcls);
}
classifier_destroy(&cls);
tcls_destroy(&tcls);
for (i = 0; i < N_RULES; i++) {
free(rules[i]);
}
} while (next_permutation(ops, ARRAY_SIZE(ops)));
assert(n_permutations == (factorial(N_RULES * 2) >> N_RULES));
}
}
static int
count_ones(unsigned long int x)
{
int n = 0;
while (x) {
x &= x - 1;
n++;
}
return n;
}
static bool
array_contains(int *array, int n, int value)
{
int i;
for (i = 0; i < n; i++) {
if (array[i] == value) {
return true;
}
}
return false;
}
/* Tests classification with two rules at a time that fall into the same
* table but different lists. */
static void
test_many_rules_in_one_table(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
{
int iteration;
for (iteration = 0; iteration < 50; iteration++) {
enum { N_RULES = 20 };
struct test_rule *rules[N_RULES];
struct test_rule *tcls_rules[N_RULES];
struct classifier cls;
struct tcls tcls;
int value_pats[N_RULES];
int value_mask;
int wcf;
int i;
do {
wcf = rand() & ((1u << CLS_N_FIELDS) - 1);
value_mask = ~wcf & ((1u << CLS_N_FIELDS) - 1);
} while ((1 << count_ones(value_mask)) < N_RULES);
classifier_init(&cls);
tcls_init(&tcls);
for (i = 0; i < N_RULES; i++) {
unsigned int priority = rand();
do {
value_pats[i] = rand() & value_mask;
} while (array_contains(value_pats, i, value_pats[i]));
rules[i] = make_rule(wcf, priority, value_pats[i]);
tcls_rules[i] = tcls_insert(&tcls, rules[i]);
assert(!classifier_insert(&cls, &rules[i]->cls_rule));
check_tables(&cls, 1, i + 1, 0);
compare_classifiers(&cls, &tcls);
}
for (i = 0; i < N_RULES; i++) {
tcls_remove(&tcls, tcls_rules[i]);
classifier_remove(&cls, &rules[i]->cls_rule);
free(rules[i]);
check_tables(&cls, i < N_RULES - 1, N_RULES - (i + 1), 0);
compare_classifiers(&cls, &tcls);
}
classifier_destroy(&cls);
tcls_destroy(&tcls);
}
}
/* Tests classification with many rules at a time that fall into random lists
* in 'n' tables. */
static void
test_many_rules_in_n_tables(int n_tables)
{
enum { MAX_RULES = 50 };
int wcfs[10];
int iteration;
int i;
assert(n_tables < 10);
for (i = 0; i < n_tables; i++) {
do {
wcfs[i] = rand() & ((1u << CLS_N_FIELDS) - 1);
} while (array_contains(wcfs, i, wcfs[i]));
}
for (iteration = 0; iteration < 30; iteration++) {
unsigned int priorities[MAX_RULES];
struct classifier cls;
struct tcls tcls;
srand(iteration);
for (i = 0; i < MAX_RULES; i++) {
priorities[i] = i * 129;
}
shuffle(priorities, ARRAY_SIZE(priorities));
classifier_init(&cls);
tcls_init(&tcls);
for (i = 0; i < MAX_RULES; i++) {
struct test_rule *rule;
unsigned int priority = priorities[i];
int wcf = wcfs[rand() % n_tables];
int value_pat = rand() & ((1u << CLS_N_FIELDS) - 1);
rule = make_rule(wcf, priority, value_pat);
tcls_insert(&tcls, rule);
assert(!classifier_insert(&cls, &rule->cls_rule));
check_tables(&cls, -1, i + 1, -1);
compare_classifiers(&cls, &tcls);
}
while (!classifier_is_empty(&cls)) {
struct test_rule *rule, *next_rule;
struct test_rule *target;
struct cls_cursor cursor;
target = xmemdup(tcls.rules[rand() % tcls.n_rules],
sizeof(struct test_rule));
cls_cursor_init(&cursor, &cls, &target->cls_rule);
CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cls_rule, &cursor) {
classifier_remove(&cls, &rule->cls_rule);
free(rule);
}
tcls_delete_matches(&tcls, &target->cls_rule);
compare_classifiers(&cls, &tcls);
check_tables(&cls, -1, -1, -1);
free(target);
}
destroy_classifier(&cls);
tcls_destroy(&tcls);
}
}
static void
test_many_rules_in_two_tables(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
{
test_many_rules_in_n_tables(2);
}
static void
test_many_rules_in_five_tables(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
{
test_many_rules_in_n_tables(5);
}
static const struct command commands[] = {
{"empty", 0, 0, test_empty},
{"destroy-null", 0, 0, test_destroy_null},
{"single-rule", 0, 0, test_single_rule},
{"rule-replacement", 0, 0, test_rule_replacement},
{"many-rules-in-one-list", 0, 0, test_many_rules_in_one_list},
{"many-rules-in-one-table", 0, 0, test_many_rules_in_one_table},
{"many-rules-in-two-tables", 0, 0, test_many_rules_in_two_tables},
{"many-rules-in-five-tables", 0, 0, test_many_rules_in_five_tables},
{NULL, 0, 0, NULL},
};
int
main(int argc, char *argv[])
{
set_program_name(argv[0]);
init_values();
run_command(argc - 1, argv + 1, commands);
return 0;
}