2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-23 10:28:00 +00:00
ovs/lib/dpif-netdev.c

4236 lines
130 KiB
C
Raw Normal View History

/*
* Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2016 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
netdev-dpdk: Fix race condition with DPDK mempools in non pmd threads DPDK mempools rely on rte_lcore_id() to implement a thread-local cache. Our non pmd threads had rte_lcore_id() == 0. This allowed concurrent access to the "thread-local" cache, causing crashes. This commit resolves the issue with the following changes: - Every non pmd thread has the same lcore_id (0, for management reasons), which is not shared with any pmd thread (lcore_id for pmd threads now start from 1) - DPDK mbufs must be allocated/freed in pmd threads. When there is the need to use mempools in non pmd threads, like in dpdk_do_tx_copy(), a mutex must be held. - The previous change does not allow us anymore to pass DPDK mbufs to handler threads: therefore this commit partially revert 143859ec63d45e. Now packets are copied for upcall processing. We can remove the extra memcpy by processing upcalls in the pmd thread itself. With the introduction of the extra locking, the packet throughput will be lower in the following cases: - When using internal (tap) devices with DPDK devices on the same datapath. Anyway, to support internal devices efficiently, we needed DPDK KNI devices, which will be proper pmd devices and will not need this locking. - When packets are processed in the slow path by non pmd threads. This overhead can be avoided by handling the upcalls directly in pmd threads (a change that has already been proposed by Ryan Wilson) Also, the following two fixes have been introduced: - In dpdk_free_buf() use rte_pktmbuf_free_seg() instead of rte_mempool_put(). This allows OVS to run properly with CONFIG_RTE_LIBRTE_MBUF_DEBUG DPDK option - Do not bulk free mbufs in a transmission queue. They may belong to different mempools Signed-off-by: Daniele Di Proietto <ddiproietto@vmware.com> Acked-by: Pravin B Shelar <pshelar@nicira.com>
2014-07-17 14:29:36 -07:00
#include "dpif-netdev.h"
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <net/if.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <unistd.h>
#include "bitmap.h"
#include "cmap.h"
#include "csum.h"
#include "dp-packet.h"
#include "dpif.h"
#include "dpif-provider.h"
#include "dummy.h"
#include "dynamic-string.h"
lib/classifier: Lockless lookups. Now that all the relevant classifier structures use RCU and internal mutual exclusion for modifications, we can remove the fat-rwlock and thus make the classifier lookups lockless. As the readers are operating concurrently with the writers, a concurrent reader may or may not see a new rule being added by a writer, depending on how the concurrent events overlap with each other. Overall, this is no different from the former locked behavior, but there the visibility of the new rule only depended on the timing of the locking functions. A new rule is first added to the segment indices, so the readers may find the rule in the indices before the rule is visible in the subtables 'rules' map. This may result in us losing the opportunity to quit lookups earlier, resulting in sub-optimal wildcarding. This will be fixed by forthcoming revalidation always scheduled after flow table changes. Similar behavior may happen due to us removing the overlapping rule (if any) from the indices only after the corresponding new rule has been added. The subtable's max priority is updated only after a rule is inserted to the maps, so the concurrent readers may not see the rule, as the updated priority ordered subtable list will only be visible after the subtable's max priority is updated. Similarly, the classifier's partitions are updated by the caller after the rule is inserted to the maps, so the readers may keep skipping the subtable until they see the updated partitions. Signed-off-by: Jarno Rajahalme <jrajahalme@nicira.com> Acked-by: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
2014-07-11 02:29:08 -07:00
#include "fat-rwlock.h"
#include "flow.h"
#include "cmap.h"
#include "coverage.h"
#include "latch.h"
#include "list.h"
#include "match.h"
#include "netdev.h"
#include "netdev-dpdk.h"
#include "netdev-vport.h"
#include "netlink.h"
#include "odp-execute.h"
#include "odp-util.h"
#include "ofp-print.h"
#include "ofpbuf.h"
#include "ovs-numa.h"
#include "ovs-rcu.h"
#include "packets.h"
#include "poll-loop.h"
#include "pvector.h"
#include "random.h"
#include "seq.h"
#include "shash.h"
#include "sset.h"
#include "timeval.h"
#include "tnl-neigh-cache.h"
#include "tnl-ports.h"
#include "unixctl.h"
#include "util.h"
#include "openvswitch/vlog.h"
VLOG_DEFINE_THIS_MODULE(dpif_netdev);
#define FLOW_DUMP_MAX_BATCH 50
/* Use per thread recirc_depth to prevent recirculation loop. */
#define MAX_RECIRC_DEPTH 5
DEFINE_STATIC_PER_THREAD_DATA(uint32_t, recirc_depth, 0)
/* Configuration parameters. */
enum { MAX_FLOWS = 65536 }; /* Maximum number of flows in flow table. */
/* Protects against changes to 'dp_netdevs'. */
static struct ovs_mutex dp_netdev_mutex = OVS_MUTEX_INITIALIZER;
/* Contains all 'struct dp_netdev's. */
static struct shash dp_netdevs OVS_GUARDED_BY(dp_netdev_mutex)
= SHASH_INITIALIZER(&dp_netdevs);
static struct vlog_rate_limit upcall_rl = VLOG_RATE_LIMIT_INIT(600, 600);
static struct odp_support dp_netdev_support = {
.max_mpls_depth = SIZE_MAX,
.recirc = true,
};
/* Stores a miniflow with inline values */
struct netdev_flow_key {
uint32_t hash; /* Hash function differs for different users. */
uint32_t len; /* Length of the following miniflow (incl. map). */
struct miniflow mf;
uint64_t buf[FLOW_MAX_PACKET_U64S];
};
/* Exact match cache for frequently used flows
*
* The cache uses a 32-bit hash of the packet (which can be the RSS hash) to
* search its entries for a miniflow that matches exactly the miniflow of the
* packet. It stores the 'dpcls_rule' (rule) that matches the miniflow.
*
* A cache entry holds a reference to its 'dp_netdev_flow'.
*
* A miniflow with a given hash can be in one of EM_FLOW_HASH_SEGS different
* entries. The 32-bit hash is split into EM_FLOW_HASH_SEGS values (each of
* them is EM_FLOW_HASH_SHIFT bits wide and the remainder is thrown away). Each
* value is the index of a cache entry where the miniflow could be.
*
*
* Thread-safety
* =============
*
* Each pmd_thread has its own private exact match cache.
* If dp_netdev_input is not called from a pmd thread, a mutex is used.
*/
#define EM_FLOW_HASH_SHIFT 13
#define EM_FLOW_HASH_ENTRIES (1u << EM_FLOW_HASH_SHIFT)
#define EM_FLOW_HASH_MASK (EM_FLOW_HASH_ENTRIES - 1)
#define EM_FLOW_HASH_SEGS 2
struct emc_entry {
struct dp_netdev_flow *flow;
struct netdev_flow_key key; /* key.hash used for emc hash value. */
};
struct emc_cache {
struct emc_entry entries[EM_FLOW_HASH_ENTRIES];
int sweep_idx; /* For emc_cache_slow_sweep(). */
};
/* Iterate in the exact match cache through every entry that might contain a
* miniflow with hash 'HASH'. */
#define EMC_FOR_EACH_POS_WITH_HASH(EMC, CURRENT_ENTRY, HASH) \
for (uint32_t i__ = 0, srch_hash__ = (HASH); \
(CURRENT_ENTRY) = &(EMC)->entries[srch_hash__ & EM_FLOW_HASH_MASK], \
i__ < EM_FLOW_HASH_SEGS; \
i__++, srch_hash__ >>= EM_FLOW_HASH_SHIFT)
/* Simple non-wildcarding single-priority classifier. */
struct dpcls {
struct cmap subtables_map;
struct pvector subtables;
};
/* A rule to be inserted to the classifier. */
struct dpcls_rule {
struct cmap_node cmap_node; /* Within struct dpcls_subtable 'rules'. */
struct netdev_flow_key *mask; /* Subtable's mask. */
struct netdev_flow_key flow; /* Matching key. */
/* 'flow' must be the last field, additional space is allocated here. */
};
static void dpcls_init(struct dpcls *);
static void dpcls_destroy(struct dpcls *);
static void dpcls_insert(struct dpcls *, struct dpcls_rule *,
const struct netdev_flow_key *mask);
static void dpcls_remove(struct dpcls *, struct dpcls_rule *);
static bool dpcls_lookup(const struct dpcls *cls,
const struct netdev_flow_key keys[],
struct dpcls_rule **rules, size_t cnt);
/* Datapath based on the network device interface from netdev.h.
*
*
* Thread-safety
* =============
*
* Some members, marked 'const', are immutable. Accessing other members
* requires synchronization, as noted in more detail below.
*
* Acquisition order is, from outermost to innermost:
*
* dp_netdev_mutex (global)
* port_mutex
*/
struct dp_netdev {
const struct dpif_class *const class;
const char *const name;
struct dpif *dpif;
struct ovs_refcount ref_cnt;
atomic_flag destroyed;
/* Ports.
*
* Protected by RCU. Take the mutex to add or remove ports. */
struct ovs_mutex port_mutex;
struct cmap ports;
struct seq *port_seq; /* Incremented whenever a port changes. */
/* Protects access to ofproto-dpif-upcall interface during revalidator
* thread synchronization. */
struct fat_rwlock upcall_rwlock;
upcall_callback *upcall_cb; /* Callback function for executing upcalls. */
void *upcall_aux;
/* Callback function for notifying the purging of dp flows (during
* reseting pmd deletion). */
dp_purge_callback *dp_purge_cb;
void *dp_purge_aux;
/* Stores all 'struct dp_netdev_pmd_thread's. */
struct cmap poll_threads;
/* Protects the access of the 'struct dp_netdev_pmd_thread'
* instance for non-pmd thread. */
struct ovs_mutex non_pmd_mutex;
/* Each pmd thread will store its pointer to
* 'struct dp_netdev_pmd_thread' in 'per_pmd_key'. */
ovsthread_key_t per_pmd_key;
/* Cpu mask for pin of pmd threads. */
char *pmd_cmask;
uint64_t last_tnl_conf_seq;
};
static struct dp_netdev_port *dp_netdev_lookup_port(const struct dp_netdev *dp,
odp_port_t);
enum dp_stat_type {
DP_STAT_EXACT_HIT, /* Packets that had an exact match (emc). */
DP_STAT_MASKED_HIT, /* Packets that matched in the flow table. */
DP_STAT_MISS, /* Packets that did not match. */
DP_STAT_LOST, /* Packets not passed up to the client. */
DP_N_STATS
};
enum pmd_cycles_counter_type {
PMD_CYCLES_POLLING, /* Cycles spent polling NICs. */
PMD_CYCLES_PROCESSING, /* Cycles spent processing packets */
PMD_N_CYCLES
};
/* A port in a netdev-based datapath. */
struct dp_netdev_port {
odp_port_t port_no;
struct netdev *netdev;
struct cmap_node node; /* Node in dp_netdev's 'ports'. */
struct netdev_saved_flags *sf;
struct netdev_rxq **rxq;
struct ovs_refcount ref_cnt;
char *type; /* Port type as requested by user. */
int latest_requested_n_rxq; /* Latest requested from netdev number
of rx queues. */
};
/* Contained by struct dp_netdev_flow's 'stats' member. */
struct dp_netdev_flow_stats {
atomic_llong used; /* Last used time, in monotonic msecs. */
atomic_ullong packet_count; /* Number of packets matched. */
atomic_ullong byte_count; /* Number of bytes matched. */
atomic_uint16_t tcp_flags; /* Bitwise-OR of seen tcp_flags values. */
};
/* A flow in 'dp_netdev_pmd_thread's 'flow_table'.
*
*
* Thread-safety
* =============
*
* Except near the beginning or ending of its lifespan, rule 'rule' belongs to
* its pmd thread's classifier. The text below calls this classifier 'cls'.
*
* Motivation
* ----------
*
* The thread safety rules described here for "struct dp_netdev_flow" are
* motivated by two goals:
*
* - Prevent threads that read members of "struct dp_netdev_flow" from
* reading bad data due to changes by some thread concurrently modifying
* those members.
*
* - Prevent two threads making changes to members of a given "struct
* dp_netdev_flow" from interfering with each other.
*
*
* Rules
* -----
*
* A flow 'flow' may be accessed without a risk of being freed during an RCU
* grace period. Code that needs to hold onto a flow for a while
* should try incrementing 'flow->ref_cnt' with dp_netdev_flow_ref().
*
* 'flow->ref_cnt' protects 'flow' from being freed. It doesn't protect the
* flow from being deleted from 'cls' and it doesn't protect members of 'flow'
* from modification.
*
* Some members, marked 'const', are immutable. Accessing other members
* requires synchronization, as noted in more detail below.
*/
struct dp_netdev_flow {
const struct flow flow; /* Unmasked flow that created this entry. */
/* Hash table index by unmasked flow. */
const struct cmap_node node; /* In owning dp_netdev_pmd_thread's */
/* 'flow_table'. */
const ovs_u128 ufid; /* Unique flow identifier. */
const unsigned pmd_id; /* The 'core_id' of pmd thread owning this */
/* flow. */
/* Number of references.
* The classifier owns one reference.
* Any thread trying to keep a rule from being freed should hold its own
* reference. */
struct ovs_refcount ref_cnt;
bool dead;
/* Statistics. */
struct dp_netdev_flow_stats stats;
/* Actions. */
OVSRCU_TYPE(struct dp_netdev_actions *) actions;
/* While processing a group of input packets, the datapath uses the next
* member to store a pointer to the output batch for the flow. It is
* reset after the batch has been sent out (See dp_netdev_queue_batches(),
* packet_batch_init() and packet_batch_execute()). */
struct packet_batch *batch;
/* Packet classification. */
struct dpcls_rule cr; /* In owning dp_netdev's 'cls'. */
/* 'cr' must be the last member. */
};
static void dp_netdev_flow_unref(struct dp_netdev_flow *);
static bool dp_netdev_flow_ref(struct dp_netdev_flow *);
static int dpif_netdev_flow_from_nlattrs(const struct nlattr *, uint32_t,
struct flow *);
/* A set of datapath actions within a "struct dp_netdev_flow".
*
*
* Thread-safety
* =============
*
* A struct dp_netdev_actions 'actions' is protected with RCU. */
struct dp_netdev_actions {
/* These members are immutable: they do not change during the struct's
* lifetime. */
unsigned int size; /* Size of 'actions', in bytes. */
struct nlattr actions[]; /* Sequence of OVS_ACTION_ATTR_* attributes. */
};
struct dp_netdev_actions *dp_netdev_actions_create(const struct nlattr *,
size_t);
struct dp_netdev_actions *dp_netdev_flow_get_actions(
const struct dp_netdev_flow *);
static void dp_netdev_actions_free(struct dp_netdev_actions *);
/* Contained by struct dp_netdev_pmd_thread's 'stats' member. */
struct dp_netdev_pmd_stats {
/* Indexed by DP_STAT_*. */
atomic_ullong n[DP_N_STATS];
};
/* Contained by struct dp_netdev_pmd_thread's 'cycle' member. */
struct dp_netdev_pmd_cycles {
/* Indexed by PMD_CYCLES_*. */
atomic_ullong n[PMD_N_CYCLES];
};
/* Contained by struct dp_netdev_pmd_thread's 'poll_list' member. */
struct rxq_poll {
struct dp_netdev_port *port;
struct netdev_rxq *rx;
struct ovs_list node;
};
/* PMD: Poll modes drivers. PMD accesses devices via polling to eliminate
* the performance overhead of interrupt processing. Therefore netdev can
* not implement rx-wait for these devices. dpif-netdev needs to poll
* these device to check for recv buffer. pmd-thread does polling for
* devices assigned to itself.
*
* DPDK used PMD for accessing NIC.
*
* Note, instance with cpu core id NON_PMD_CORE_ID will be reserved for
* I/O of all non-pmd threads. There will be no actual thread created
* for the instance.
*
* Each struct has its own flow table and classifier. Packets received
* from managed ports are looked up in the corresponding pmd thread's
* flow table, and are executed with the found actions.
* */
struct dp_netdev_pmd_thread {
struct dp_netdev *dp;
struct ovs_refcount ref_cnt; /* Every reference must be refcount'ed. */
struct cmap_node node; /* In 'dp->poll_threads'. */
pthread_cond_t cond; /* For synchronizing pmd thread reload. */
struct ovs_mutex cond_mutex; /* Mutex for condition variable. */
/* Per thread exact-match cache. Note, the instance for cpu core
* NON_PMD_CORE_ID can be accessed by multiple threads, and thusly
* need to be protected (e.g. by 'dp_netdev_mutex'). All other
* instances will only be accessed by its own pmd thread. */
struct emc_cache flow_cache;
/* Classifier and Flow-Table.
*
* Writers of 'flow_table' must take the 'flow_mutex'. Corresponding
* changes to 'cls' must be made while still holding the 'flow_mutex'.
*/
struct ovs_mutex flow_mutex;
struct dpcls cls;
struct cmap flow_table OVS_GUARDED; /* Flow table. */
/* Statistics. */
struct dp_netdev_pmd_stats stats;
/* Cycles counters */
struct dp_netdev_pmd_cycles cycles;
/* Used to count cicles. See 'cycles_counter_end()' */
unsigned long long last_cycles;
struct latch exit_latch; /* For terminating the pmd thread. */
atomic_uint change_seq; /* For reloading pmd ports. */
pthread_t thread;
int index; /* Idx of this pmd thread among pmd*/
/* threads on same numa node. */
unsigned core_id; /* CPU core id of this pmd thread. */
int numa_id; /* numa node id of this pmd thread. */
atomic_int tx_qid; /* Queue id used by this pmd thread to
* send packets on all netdevs */
struct ovs_mutex poll_mutex; /* Mutex for poll_list. */
/* List of rx queues to poll. */
struct ovs_list poll_list OVS_GUARDED;
int poll_cnt; /* Number of elemints in poll_list. */
/* Only a pmd thread can write on its own 'cycles' and 'stats'.
* The main thread keeps 'stats_zero' and 'cycles_zero' as base
* values and subtracts them from 'stats' and 'cycles' before
* reporting to the user */
unsigned long long stats_zero[DP_N_STATS];
uint64_t cycles_zero[PMD_N_CYCLES];
};
#define PMD_INITIAL_SEQ 1
/* Interface to netdev-based datapath. */
struct dpif_netdev {
struct dpif dpif;
struct dp_netdev *dp;
uint64_t last_port_seq;
};
static int get_port_by_number(struct dp_netdev *dp, odp_port_t port_no,
struct dp_netdev_port **portp);
static int get_port_by_name(struct dp_netdev *dp, const char *devname,
struct dp_netdev_port **portp);
static void dp_netdev_free(struct dp_netdev *)
OVS_REQUIRES(dp_netdev_mutex);
static int do_add_port(struct dp_netdev *dp, const char *devname,
const char *type, odp_port_t port_no)
OVS_REQUIRES(dp->port_mutex);
static void do_del_port(struct dp_netdev *dp, struct dp_netdev_port *)
OVS_REQUIRES(dp->port_mutex);
static int dpif_netdev_open(const struct dpif_class *, const char *name,
bool create, struct dpif **);
static void dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
struct dp_packet **, int c,
bool may_steal,
const struct nlattr *actions,
size_t actions_len);
static void dp_netdev_input(struct dp_netdev_pmd_thread *,
struct dp_packet **, int cnt, odp_port_t port_no);
static void dp_netdev_recirculate(struct dp_netdev_pmd_thread *,
struct dp_packet **, int cnt);
static void dp_netdev_disable_upcall(struct dp_netdev *);
static void dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd);
static void dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd,
struct dp_netdev *dp, int index,
unsigned core_id, int numa_id);
static void dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd);
static void dp_netdev_set_nonpmd(struct dp_netdev *dp);
static struct dp_netdev_pmd_thread *dp_netdev_get_pmd(struct dp_netdev *dp,
unsigned core_id);
static struct dp_netdev_pmd_thread *
dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos);
static void dp_netdev_destroy_all_pmds(struct dp_netdev *dp);
static void dp_netdev_del_pmds_on_numa(struct dp_netdev *dp, int numa_id);
static void dp_netdev_set_pmds_on_numa(struct dp_netdev *dp, int numa_id);
static void
dp_netdev_add_rxq_to_pmd(struct dp_netdev_pmd_thread *pmd,
struct dp_netdev_port *port, struct netdev_rxq *rx);
static struct dp_netdev_pmd_thread *
dp_netdev_less_loaded_pmd_on_numa(struct dp_netdev *dp, int numa_id);
static void dp_netdev_reset_pmd_threads(struct dp_netdev *dp);
static bool dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd);
static void dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd);
static void dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd);
static inline bool emc_entry_alive(struct emc_entry *ce);
static void emc_clear_entry(struct emc_entry *ce);
static void
emc_cache_init(struct emc_cache *flow_cache)
{
int i;
flow_cache->sweep_idx = 0;
for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
flow_cache->entries[i].flow = NULL;
flow_cache->entries[i].key.hash = 0;
flow_cache->entries[i].key.len = sizeof(struct miniflow);
flowmap_init(&flow_cache->entries[i].key.mf.map);
}
}
static void
emc_cache_uninit(struct emc_cache *flow_cache)
{
int i;
for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
emc_clear_entry(&flow_cache->entries[i]);
}
}
/* Check and clear dead flow references slowly (one entry at each
* invocation). */
static void
emc_cache_slow_sweep(struct emc_cache *flow_cache)
{
struct emc_entry *entry = &flow_cache->entries[flow_cache->sweep_idx];
if (!emc_entry_alive(entry)) {
emc_clear_entry(entry);
}
flow_cache->sweep_idx = (flow_cache->sweep_idx + 1) & EM_FLOW_HASH_MASK;
}
/* Returns true if 'dpif' is a netdev or dummy dpif, false otherwise. */
bool
dpif_is_netdev(const struct dpif *dpif)
{
return dpif->dpif_class->open == dpif_netdev_open;
}
static struct dpif_netdev *
dpif_netdev_cast(const struct dpif *dpif)
{
ovs_assert(dpif_is_netdev(dpif));
return CONTAINER_OF(dpif, struct dpif_netdev, dpif);
}
static struct dp_netdev *
get_dp_netdev(const struct dpif *dpif)
{
return dpif_netdev_cast(dpif)->dp;
}
enum pmd_info_type {
PMD_INFO_SHOW_STATS, /* Show how cpu cycles are spent. */
PMD_INFO_CLEAR_STATS, /* Set the cycles count to 0. */
PMD_INFO_SHOW_RXQ /* Show poll-lists of pmd threads. */
};
static void
pmd_info_show_stats(struct ds *reply,
struct dp_netdev_pmd_thread *pmd,
unsigned long long stats[DP_N_STATS],
uint64_t cycles[PMD_N_CYCLES])
{
unsigned long long total_packets = 0;
uint64_t total_cycles = 0;
int i;
/* These loops subtracts reference values ('*_zero') from the counters.
* Since loads and stores are relaxed, it might be possible for a '*_zero'
* value to be more recent than the current value we're reading from the
* counter. This is not a big problem, since these numbers are not
* supposed to be too accurate, but we should at least make sure that
* the result is not negative. */
for (i = 0; i < DP_N_STATS; i++) {
if (stats[i] > pmd->stats_zero[i]) {
stats[i] -= pmd->stats_zero[i];
} else {
stats[i] = 0;
}
if (i != DP_STAT_LOST) {
/* Lost packets are already included in DP_STAT_MISS */
total_packets += stats[i];
}
}
for (i = 0; i < PMD_N_CYCLES; i++) {
if (cycles[i] > pmd->cycles_zero[i]) {
cycles[i] -= pmd->cycles_zero[i];
} else {
cycles[i] = 0;
}
total_cycles += cycles[i];
}
ds_put_cstr(reply, (pmd->core_id == NON_PMD_CORE_ID)
? "main thread" : "pmd thread");
if (pmd->numa_id != OVS_NUMA_UNSPEC) {
ds_put_format(reply, " numa_id %d", pmd->numa_id);
}
if (pmd->core_id != OVS_CORE_UNSPEC && pmd->core_id != NON_PMD_CORE_ID) {
ds_put_format(reply, " core_id %u", pmd->core_id);
}
ds_put_cstr(reply, ":\n");
ds_put_format(reply,
"\temc hits:%llu\n\tmegaflow hits:%llu\n"
"\tmiss:%llu\n\tlost:%llu\n",
stats[DP_STAT_EXACT_HIT], stats[DP_STAT_MASKED_HIT],
stats[DP_STAT_MISS], stats[DP_STAT_LOST]);
if (total_cycles == 0) {
return;
}
ds_put_format(reply,
"\tpolling cycles:%"PRIu64" (%.02f%%)\n"
"\tprocessing cycles:%"PRIu64" (%.02f%%)\n",
cycles[PMD_CYCLES_POLLING],
cycles[PMD_CYCLES_POLLING] / (double)total_cycles * 100,
cycles[PMD_CYCLES_PROCESSING],
cycles[PMD_CYCLES_PROCESSING] / (double)total_cycles * 100);
if (total_packets == 0) {
return;
}
ds_put_format(reply,
"\tavg cycles per packet: %.02f (%"PRIu64"/%llu)\n",
total_cycles / (double)total_packets,
total_cycles, total_packets);
ds_put_format(reply,
"\tavg processing cycles per packet: "
"%.02f (%"PRIu64"/%llu)\n",
cycles[PMD_CYCLES_PROCESSING] / (double)total_packets,
cycles[PMD_CYCLES_PROCESSING], total_packets);
}
static void
pmd_info_clear_stats(struct ds *reply OVS_UNUSED,
struct dp_netdev_pmd_thread *pmd,
unsigned long long stats[DP_N_STATS],
uint64_t cycles[PMD_N_CYCLES])
{
int i;
/* We cannot write 'stats' and 'cycles' (because they're written by other
* threads) and we shouldn't change 'stats' (because they're used to count
* datapath stats, which must not be cleared here). Instead, we save the
* current values and subtract them from the values to be displayed in the
* future */
for (i = 0; i < DP_N_STATS; i++) {
pmd->stats_zero[i] = stats[i];
}
for (i = 0; i < PMD_N_CYCLES; i++) {
pmd->cycles_zero[i] = cycles[i];
}
}
static void
pmd_info_show_rxq(struct ds *reply, struct dp_netdev_pmd_thread *pmd)
{
if (pmd->core_id != NON_PMD_CORE_ID) {
struct rxq_poll *poll;
const char *prev_name = NULL;
ds_put_format(reply, "pmd thread numa_id %d core_id %u:\n",
pmd->numa_id, pmd->core_id);
ovs_mutex_lock(&pmd->poll_mutex);
LIST_FOR_EACH (poll, node, &pmd->poll_list) {
const char *name = netdev_get_name(poll->port->netdev);
if (!prev_name || strcmp(name, prev_name)) {
if (prev_name) {
ds_put_cstr(reply, "\n");
}
ds_put_format(reply, "\tport: %s\tqueue-id:",
netdev_get_name(poll->port->netdev));
}
ds_put_format(reply, " %d", netdev_rxq_get_queue_id(poll->rx));
prev_name = name;
}
ovs_mutex_unlock(&pmd->poll_mutex);
ds_put_cstr(reply, "\n");
}
}
static void
dpif_netdev_pmd_info(struct unixctl_conn *conn, int argc, const char *argv[],
void *aux)
{
struct ds reply = DS_EMPTY_INITIALIZER;
struct dp_netdev_pmd_thread *pmd;
struct dp_netdev *dp = NULL;
enum pmd_info_type type = *(enum pmd_info_type *) aux;
ovs_mutex_lock(&dp_netdev_mutex);
if (argc == 2) {
dp = shash_find_data(&dp_netdevs, argv[1]);
} else if (shash_count(&dp_netdevs) == 1) {
/* There's only one datapath */
dp = shash_first(&dp_netdevs)->data;
}
if (!dp) {
ovs_mutex_unlock(&dp_netdev_mutex);
unixctl_command_reply_error(conn,
"please specify an existing datapath");
return;
}
CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
if (type == PMD_INFO_SHOW_RXQ) {
pmd_info_show_rxq(&reply, pmd);
} else {
unsigned long long stats[DP_N_STATS];
uint64_t cycles[PMD_N_CYCLES];
int i;
/* Read current stats and cycle counters */
for (i = 0; i < ARRAY_SIZE(stats); i++) {
atomic_read_relaxed(&pmd->stats.n[i], &stats[i]);
}
for (i = 0; i < ARRAY_SIZE(cycles); i++) {
atomic_read_relaxed(&pmd->cycles.n[i], &cycles[i]);
}
if (type == PMD_INFO_CLEAR_STATS) {
pmd_info_clear_stats(&reply, pmd, stats, cycles);
} else if (type == PMD_INFO_SHOW_STATS) {
pmd_info_show_stats(&reply, pmd, stats, cycles);
}
}
}
ovs_mutex_unlock(&dp_netdev_mutex);
unixctl_command_reply(conn, ds_cstr(&reply));
ds_destroy(&reply);
}
static int
dpif_netdev_init(void)
{
static enum pmd_info_type show_aux = PMD_INFO_SHOW_STATS,
clear_aux = PMD_INFO_CLEAR_STATS,
poll_aux = PMD_INFO_SHOW_RXQ;
unixctl_command_register("dpif-netdev/pmd-stats-show", "[dp]",
0, 1, dpif_netdev_pmd_info,
(void *)&show_aux);
unixctl_command_register("dpif-netdev/pmd-stats-clear", "[dp]",
0, 1, dpif_netdev_pmd_info,
(void *)&clear_aux);
unixctl_command_register("dpif-netdev/pmd-rxq-show", "[dp]",
0, 1, dpif_netdev_pmd_info,
(void *)&poll_aux);
return 0;
}
static int
dpif_netdev_enumerate(struct sset *all_dps,
const struct dpif_class *dpif_class)
{
struct shash_node *node;
ovs_mutex_lock(&dp_netdev_mutex);
SHASH_FOR_EACH(node, &dp_netdevs) {
struct dp_netdev *dp = node->data;
if (dpif_class != dp->class) {
/* 'dp_netdevs' contains both "netdev" and "dummy" dpifs.
* If the class doesn't match, skip this dpif. */
continue;
}
sset_add(all_dps, node->name);
}
ovs_mutex_unlock(&dp_netdev_mutex);
return 0;
}
static bool
dpif_netdev_class_is_dummy(const struct dpif_class *class)
{
return class != &dpif_netdev_class;
}
static const char *
dpif_netdev_port_open_type(const struct dpif_class *class, const char *type)
{
return strcmp(type, "internal") ? type
: dpif_netdev_class_is_dummy(class) ? "dummy"
: "tap";
}
static struct dpif *
create_dpif_netdev(struct dp_netdev *dp)
{
uint16_t netflow_id = hash_string(dp->name, 0);
struct dpif_netdev *dpif;
ovs_refcount_ref(&dp->ref_cnt);
dpif = xmalloc(sizeof *dpif);
dpif_init(&dpif->dpif, dp->class, dp->name, netflow_id >> 8, netflow_id);
dpif->dp = dp;
dpif->last_port_seq = seq_read(dp->port_seq);
return &dpif->dpif;
}
/* Choose an unused, non-zero port number and return it on success.
* Return ODPP_NONE on failure. */
static odp_port_t
choose_port(struct dp_netdev *dp, const char *name)
OVS_REQUIRES(dp->port_mutex)
{
uint32_t port_no;
if (dp->class != &dpif_netdev_class) {
const char *p;
int start_no = 0;
/* If the port name begins with "br", start the number search at
* 100 to make writing tests easier. */
if (!strncmp(name, "br", 2)) {
start_no = 100;
}
/* If the port name contains a number, try to assign that port number.
* This can make writing unit tests easier because port numbers are
* predictable. */
for (p = name; *p != '\0'; p++) {
if (isdigit((unsigned char) *p)) {
port_no = start_no + strtol(p, NULL, 10);
if (port_no > 0 && port_no != odp_to_u32(ODPP_NONE)
&& !dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
return u32_to_odp(port_no);
}
break;
}
}
}
for (port_no = 1; port_no <= UINT16_MAX; port_no++) {
if (!dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
return u32_to_odp(port_no);
}
}
return ODPP_NONE;
}
static int
create_dp_netdev(const char *name, const struct dpif_class *class,
struct dp_netdev **dpp)
OVS_REQUIRES(dp_netdev_mutex)
{
struct dp_netdev *dp;
int error;
dp = xzalloc(sizeof *dp);
shash_add(&dp_netdevs, name, dp);
*CONST_CAST(const struct dpif_class **, &dp->class) = class;
*CONST_CAST(const char **, &dp->name) = xstrdup(name);
ovs_refcount_init(&dp->ref_cnt);
atomic_flag_clear(&dp->destroyed);
ovs_mutex_init(&dp->port_mutex);
cmap_init(&dp->ports);
dp->port_seq = seq_create();
fat_rwlock_init(&dp->upcall_rwlock);
/* Disable upcalls by default. */
dp_netdev_disable_upcall(dp);
dp->upcall_aux = NULL;
dp->upcall_cb = NULL;
cmap_init(&dp->poll_threads);
ovs_mutex_init_recursive(&dp->non_pmd_mutex);
ovsthread_key_create(&dp->per_pmd_key, NULL);
dp_netdev_set_nonpmd(dp);
ovs_mutex_lock(&dp->port_mutex);
error = do_add_port(dp, name, "internal", ODPP_LOCAL);
ovs_mutex_unlock(&dp->port_mutex);
if (error) {
dp_netdev_free(dp);
return error;
}
dp->last_tnl_conf_seq = seq_read(tnl_conf_seq);
*dpp = dp;
return 0;
}
static int
dpif_netdev_open(const struct dpif_class *class, const char *name,
bool create, struct dpif **dpifp)
{
struct dp_netdev *dp;
int error;
ovs_mutex_lock(&dp_netdev_mutex);
dp = shash_find_data(&dp_netdevs, name);
if (!dp) {
error = create ? create_dp_netdev(name, class, &dp) : ENODEV;
} else {
error = (dp->class != class ? EINVAL
: create ? EEXIST
: 0);
}
if (!error) {
*dpifp = create_dpif_netdev(dp);
dp->dpif = *dpifp;
}
ovs_mutex_unlock(&dp_netdev_mutex);
return error;
}
static void
dp_netdev_destroy_upcall_lock(struct dp_netdev *dp)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
/* Check that upcalls are disabled, i.e. that the rwlock is taken */
ovs_assert(fat_rwlock_tryrdlock(&dp->upcall_rwlock));
/* Before freeing a lock we should release it */
fat_rwlock_unlock(&dp->upcall_rwlock);
fat_rwlock_destroy(&dp->upcall_rwlock);
}
/* Requires dp_netdev_mutex so that we can't get a new reference to 'dp'
* through the 'dp_netdevs' shash while freeing 'dp'. */
static void
dp_netdev_free(struct dp_netdev *dp)
OVS_REQUIRES(dp_netdev_mutex)
{
struct dp_netdev_port *port;
shash_find_and_delete(&dp_netdevs, dp->name);
dp_netdev_destroy_all_pmds(dp);
ovs_mutex_destroy(&dp->non_pmd_mutex);
ovsthread_key_delete(dp->per_pmd_key);
ovs_mutex_lock(&dp->port_mutex);
CMAP_FOR_EACH (port, node, &dp->ports) {
/* PMD threads are destroyed here. do_del_port() cannot quiesce */
do_del_port(dp, port);
}
ovs_mutex_unlock(&dp->port_mutex);
cmap_destroy(&dp->poll_threads);
seq_destroy(dp->port_seq);
cmap_destroy(&dp->ports);
/* Upcalls must be disabled at this point */
dp_netdev_destroy_upcall_lock(dp);
free(dp->pmd_cmask);
free(CONST_CAST(char *, dp->name));
free(dp);
}
static void
dp_netdev_unref(struct dp_netdev *dp)
{
if (dp) {
/* Take dp_netdev_mutex so that, if dp->ref_cnt falls to zero, we can't
* get a new reference to 'dp' through the 'dp_netdevs' shash. */
ovs_mutex_lock(&dp_netdev_mutex);
if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
dp_netdev_free(dp);
}
ovs_mutex_unlock(&dp_netdev_mutex);
}
}
static void
dpif_netdev_close(struct dpif *dpif)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
dp_netdev_unref(dp);
free(dpif);
}
static int
dpif_netdev_destroy(struct dpif *dpif)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
if (!atomic_flag_test_and_set(&dp->destroyed)) {
if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
/* Can't happen: 'dpif' still owns a reference to 'dp'. */
OVS_NOT_REACHED();
}
}
return 0;
}
/* Add 'n' to the atomic variable 'var' non-atomically and using relaxed
* load/store semantics. While the increment is not atomic, the load and
* store operations are, making it impossible to read inconsistent values.
*
* This is used to update thread local stats counters. */
static void
non_atomic_ullong_add(atomic_ullong *var, unsigned long long n)
{
unsigned long long tmp;
atomic_read_relaxed(var, &tmp);
tmp += n;
atomic_store_relaxed(var, tmp);
}
static int
dpif_netdev_get_stats(const struct dpif *dpif, struct dpif_dp_stats *stats)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
struct dp_netdev_pmd_thread *pmd;
stats->n_flows = stats->n_hit = stats->n_missed = stats->n_lost = 0;
CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
unsigned long long n;
stats->n_flows += cmap_count(&pmd->flow_table);
atomic_read_relaxed(&pmd->stats.n[DP_STAT_MASKED_HIT], &n);
stats->n_hit += n;
atomic_read_relaxed(&pmd->stats.n[DP_STAT_EXACT_HIT], &n);
stats->n_hit += n;
atomic_read_relaxed(&pmd->stats.n[DP_STAT_MISS], &n);
stats->n_missed += n;
atomic_read_relaxed(&pmd->stats.n[DP_STAT_LOST], &n);
stats->n_lost += n;
}
stats->n_masks = UINT32_MAX;
stats->n_mask_hit = UINT64_MAX;
return 0;
}
static void
dp_netdev_reload_pmd__(struct dp_netdev_pmd_thread *pmd)
{
int old_seq;
if (pmd->core_id == NON_PMD_CORE_ID) {
return;
}
ovs_mutex_lock(&pmd->cond_mutex);
atomic_add_relaxed(&pmd->change_seq, 1, &old_seq);
ovs_mutex_cond_wait(&pmd->cond, &pmd->cond_mutex);
ovs_mutex_unlock(&pmd->cond_mutex);
}
static uint32_t
hash_port_no(odp_port_t port_no)
{
return hash_int(odp_to_u32(port_no), 0);
}
static int
do_add_port(struct dp_netdev *dp, const char *devname, const char *type,
odp_port_t port_no)
OVS_REQUIRES(dp->port_mutex)
{
struct netdev_saved_flags *sf;
struct dp_netdev_port *port;
struct netdev *netdev;
enum netdev_flags flags;
const char *open_type;
int error;
int i;
/* Reject devices already in 'dp'. */
if (!get_port_by_name(dp, devname, &port)) {
return EEXIST;
}
/* Open and validate network device. */
open_type = dpif_netdev_port_open_type(dp->class, type);
error = netdev_open(devname, open_type, &netdev);
if (error) {
return error;
}
/* XXX reject non-Ethernet devices */
netdev_get_flags(netdev, &flags);
if (flags & NETDEV_LOOPBACK) {
VLOG_ERR("%s: cannot add a loopback device", devname);
netdev_close(netdev);
return EINVAL;
}
if (netdev_is_pmd(netdev)) {
int n_cores = ovs_numa_get_n_cores();
if (n_cores == OVS_CORE_UNSPEC) {
VLOG_ERR("%s, cannot get cpu core info", devname);
return ENOENT;
}
/* There can only be ovs_numa_get_n_cores() pmd threads,
* so creates a txq for each, and one extra for the non
* pmd threads. */
error = netdev_set_multiq(netdev, n_cores + 1,
netdev_requested_n_rxq(netdev));
if (error && (error != EOPNOTSUPP)) {
VLOG_ERR("%s, cannot set multiq", devname);
return errno;
}
}
port = xzalloc(sizeof *port);
port->port_no = port_no;
port->netdev = netdev;
port->rxq = xmalloc(sizeof *port->rxq * netdev_n_rxq(netdev));
port->type = xstrdup(type);
port->latest_requested_n_rxq = netdev_requested_n_rxq(netdev);
for (i = 0; i < netdev_n_rxq(netdev); i++) {
error = netdev_rxq_open(netdev, &port->rxq[i], i);
if (error
&& !(error == EOPNOTSUPP && dpif_netdev_class_is_dummy(dp->class))) {
VLOG_ERR("%s: cannot receive packets on this network device (%s)",
devname, ovs_strerror(errno));
netdev_close(netdev);
free(port->type);
free(port->rxq);
free(port);
return error;
}
}
error = netdev_turn_flags_on(netdev, NETDEV_PROMISC, &sf);
if (error) {
for (i = 0; i < netdev_n_rxq(netdev); i++) {
netdev_rxq_close(port->rxq[i]);
}
netdev_close(netdev);
free(port->type);
free(port->rxq);
free(port);
return error;
}
port->sf = sf;
ovs_refcount_init(&port->ref_cnt);
cmap_insert(&dp->ports, &port->node, hash_port_no(port_no));
if (netdev_is_pmd(netdev)) {
int numa_id = netdev_get_numa_id(netdev);
struct dp_netdev_pmd_thread *pmd;
/* Cannot create pmd threads for invalid numa node. */
ovs_assert(ovs_numa_numa_id_is_valid(numa_id));
for (i = 0; i < netdev_n_rxq(netdev); i++) {
pmd = dp_netdev_less_loaded_pmd_on_numa(dp, numa_id);
if (!pmd) {
/* There is no pmd threads on this numa node. */
dp_netdev_set_pmds_on_numa(dp, numa_id);
/* Assigning of rx queues done. */
break;
}
ovs_mutex_lock(&pmd->poll_mutex);
dp_netdev_add_rxq_to_pmd(pmd, port, port->rxq[i]);
ovs_mutex_unlock(&pmd->poll_mutex);
dp_netdev_reload_pmd__(pmd);
}
}
seq_change(dp->port_seq);
return 0;
}
static int
dpif_netdev_port_add(struct dpif *dpif, struct netdev *netdev,
odp_port_t *port_nop)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
const char *dpif_port;
odp_port_t port_no;
int error;
ovs_mutex_lock(&dp->port_mutex);
dpif_port = netdev_vport_get_dpif_port(netdev, namebuf, sizeof namebuf);
if (*port_nop != ODPP_NONE) {
port_no = *port_nop;
error = dp_netdev_lookup_port(dp, *port_nop) ? EBUSY : 0;
} else {
port_no = choose_port(dp, dpif_port);
error = port_no == ODPP_NONE ? EFBIG : 0;
}
if (!error) {
*port_nop = port_no;
error = do_add_port(dp, dpif_port, netdev_get_type(netdev), port_no);
}
ovs_mutex_unlock(&dp->port_mutex);
return error;
}
static int
dpif_netdev_port_del(struct dpif *dpif, odp_port_t port_no)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
int error;
ovs_mutex_lock(&dp->port_mutex);
if (port_no == ODPP_LOCAL) {
error = EINVAL;
} else {
struct dp_netdev_port *port;
error = get_port_by_number(dp, port_no, &port);
if (!error) {
do_del_port(dp, port);
}
}
ovs_mutex_unlock(&dp->port_mutex);
return error;
}
static bool
is_valid_port_number(odp_port_t port_no)
{
return port_no != ODPP_NONE;
}
static struct dp_netdev_port *
dp_netdev_lookup_port(const struct dp_netdev *dp, odp_port_t port_no)
{
struct dp_netdev_port *port;
CMAP_FOR_EACH_WITH_HASH (port, node, hash_port_no(port_no), &dp->ports) {
if (port->port_no == port_no) {
return port;
}
}
return NULL;
}
static int
get_port_by_number(struct dp_netdev *dp,
odp_port_t port_no, struct dp_netdev_port **portp)
{
if (!is_valid_port_number(port_no)) {
*portp = NULL;
return EINVAL;
} else {
*portp = dp_netdev_lookup_port(dp, port_no);
return *portp ? 0 : ENOENT;
}
}
static void
port_ref(struct dp_netdev_port *port)
{
if (port) {
ovs_refcount_ref(&port->ref_cnt);
}
}
static void
port_unref(struct dp_netdev_port *port)
{
if (port && ovs_refcount_unref_relaxed(&port->ref_cnt) == 1) {
int n_rxq = netdev_n_rxq(port->netdev);
int i;
netdev_close(port->netdev);
netdev_restore_flags(port->sf);
for (i = 0; i < n_rxq; i++) {
netdev_rxq_close(port->rxq[i]);
}
free(port->rxq);
free(port->type);
free(port);
}
}
static int
get_port_by_name(struct dp_netdev *dp,
const char *devname, struct dp_netdev_port **portp)
OVS_REQUIRES(dp->port_mutex)
{
struct dp_netdev_port *port;
CMAP_FOR_EACH (port, node, &dp->ports) {
if (!strcmp(netdev_get_name(port->netdev), devname)) {
*portp = port;
return 0;
}
}
return ENOENT;
}
static int
get_n_pmd_threads(struct dp_netdev *dp)
{
/* There is one non pmd thread in dp->poll_threads */
return cmap_count(&dp->poll_threads) - 1;
}
static int
get_n_pmd_threads_on_numa(struct dp_netdev *dp, int numa_id)
{
struct dp_netdev_pmd_thread *pmd;
int n_pmds = 0;
CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
if (pmd->numa_id == numa_id) {
n_pmds++;
}
}
return n_pmds;
}
/* Returns 'true' if there is a port with pmd netdev and the netdev
* is on numa node 'numa_id'. */
static bool
has_pmd_port_for_numa(struct dp_netdev *dp, int numa_id)
{
struct dp_netdev_port *port;
CMAP_FOR_EACH (port, node, &dp->ports) {
if (netdev_is_pmd(port->netdev)
&& netdev_get_numa_id(port->netdev) == numa_id) {
return true;
}
}
return false;
}
static void
do_del_port(struct dp_netdev *dp, struct dp_netdev_port *port)
OVS_REQUIRES(dp->port_mutex)
{
cmap_remove(&dp->ports, &port->node, hash_odp_port(port->port_no));
seq_change(dp->port_seq);
if (netdev_is_pmd(port->netdev)) {
int numa_id = netdev_get_numa_id(port->netdev);
/* PMD threads can not be on invalid numa node. */
ovs_assert(ovs_numa_numa_id_is_valid(numa_id));
/* If there is no netdev on the numa node, deletes the pmd threads
* for that numa. Else, deletes the queues from polling lists. */
if (!has_pmd_port_for_numa(dp, numa_id)) {
dp_netdev_del_pmds_on_numa(dp, numa_id);
} else {
struct dp_netdev_pmd_thread *pmd;
struct rxq_poll *poll, *next;
CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
if (pmd->numa_id == numa_id) {
bool found = false;
ovs_mutex_lock(&pmd->poll_mutex);
LIST_FOR_EACH_SAFE (poll, next, node, &pmd->poll_list) {
if (poll->port == port) {
found = true;
port_unref(poll->port);
list_remove(&poll->node);
pmd->poll_cnt--;
free(poll);
}
}
ovs_mutex_unlock(&pmd->poll_mutex);
if (found) {
dp_netdev_reload_pmd__(pmd);
}
}
}
}
}
port_unref(port);
}
static void
answer_port_query(const struct dp_netdev_port *port,
struct dpif_port *dpif_port)
{
dpif_port->name = xstrdup(netdev_get_name(port->netdev));
dpif_port->type = xstrdup(port->type);
dpif_port->port_no = port->port_no;
}
static int
dpif_netdev_port_query_by_number(const struct dpif *dpif, odp_port_t port_no,
struct dpif_port *dpif_port)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
struct dp_netdev_port *port;
int error;
error = get_port_by_number(dp, port_no, &port);
if (!error && dpif_port) {
answer_port_query(port, dpif_port);
}
return error;
}
static int
dpif_netdev_port_query_by_name(const struct dpif *dpif, const char *devname,
struct dpif_port *dpif_port)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
struct dp_netdev_port *port;
int error;
ovs_mutex_lock(&dp->port_mutex);
error = get_port_by_name(dp, devname, &port);
if (!error && dpif_port) {
answer_port_query(port, dpif_port);
}
ovs_mutex_unlock(&dp->port_mutex);
return error;
}
static void
dp_netdev_flow_free(struct dp_netdev_flow *flow)
{
dp_netdev_actions_free(dp_netdev_flow_get_actions(flow));
free(flow);
}
static void dp_netdev_flow_unref(struct dp_netdev_flow *flow)
{
if (ovs_refcount_unref_relaxed(&flow->ref_cnt) == 1) {
ovsrcu_postpone(dp_netdev_flow_free, flow);
}
}
static uint32_t
dp_netdev_flow_hash(const ovs_u128 *ufid)
{
return ufid->u32[0];
}
static void
dp_netdev_pmd_remove_flow(struct dp_netdev_pmd_thread *pmd,
struct dp_netdev_flow *flow)
OVS_REQUIRES(pmd->flow_mutex)
{
struct cmap_node *node = CONST_CAST(struct cmap_node *, &flow->node);
dpcls_remove(&pmd->cls, &flow->cr);
flow->cr.mask = NULL; /* Accessing rule's mask after this is not safe. */
cmap_remove(&pmd->flow_table, node, dp_netdev_flow_hash(&flow->ufid));
flow->dead = true;
dp_netdev_flow_unref(flow);
}
static void
dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd)
{
struct dp_netdev_flow *netdev_flow;
ovs_mutex_lock(&pmd->flow_mutex);
CMAP_FOR_EACH (netdev_flow, node, &pmd->flow_table) {
dp_netdev_pmd_remove_flow(pmd, netdev_flow);
}
ovs_mutex_unlock(&pmd->flow_mutex);
}
static int
dpif_netdev_flow_flush(struct dpif *dpif)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
struct dp_netdev_pmd_thread *pmd;
CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
dp_netdev_pmd_flow_flush(pmd);
}
return 0;
}
2011-01-10 13:12:12 -08:00
struct dp_netdev_port_state {
struct cmap_position position;
char *name;
2011-01-10 13:12:12 -08:00
};
static int
dpif_netdev_port_dump_start(const struct dpif *dpif OVS_UNUSED, void **statep)
{
*statep = xzalloc(sizeof(struct dp_netdev_port_state));
return 0;
}
static int
2011-01-10 13:12:12 -08:00
dpif_netdev_port_dump_next(const struct dpif *dpif, void *state_,
struct dpif_port *dpif_port)
{
2011-01-10 13:12:12 -08:00
struct dp_netdev_port_state *state = state_;
struct dp_netdev *dp = get_dp_netdev(dpif);
struct cmap_node *node;
int retval;
node = cmap_next_position(&dp->ports, &state->position);
if (node) {
struct dp_netdev_port *port;
port = CONTAINER_OF(node, struct dp_netdev_port, node);
free(state->name);
state->name = xstrdup(netdev_get_name(port->netdev));
dpif_port->name = state->name;
dpif_port->type = port->type;
dpif_port->port_no = port->port_no;
retval = 0;
} else {
retval = EOF;
}
return retval;
2011-01-10 13:12:12 -08:00
}
static int
dpif_netdev_port_dump_done(const struct dpif *dpif OVS_UNUSED, void *state_)
2011-01-10 13:12:12 -08:00
{
struct dp_netdev_port_state *state = state_;
free(state->name);
2011-01-10 13:12:12 -08:00
free(state);
return 0;
}
static int
dpif_netdev_port_poll(const struct dpif *dpif_, char **devnamep OVS_UNUSED)
{
struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
uint64_t new_port_seq;
int error;
new_port_seq = seq_read(dpif->dp->port_seq);
if (dpif->last_port_seq != new_port_seq) {
dpif->last_port_seq = new_port_seq;
error = ENOBUFS;
} else {
error = EAGAIN;
}
return error;
}
static void
dpif_netdev_port_poll_wait(const struct dpif *dpif_)
{
struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
seq_wait(dpif->dp->port_seq, dpif->last_port_seq);
}
static struct dp_netdev_flow *
dp_netdev_flow_cast(const struct dpcls_rule *cr)
{
return cr ? CONTAINER_OF(cr, struct dp_netdev_flow, cr) : NULL;
}
static bool dp_netdev_flow_ref(struct dp_netdev_flow *flow)
{
return ovs_refcount_try_ref_rcu(&flow->ref_cnt);
}
/* netdev_flow_key utilities.
*
* netdev_flow_key is basically a miniflow. We use these functions
* (netdev_flow_key_clone, netdev_flow_key_equal, ...) instead of the miniflow
* functions (miniflow_clone_inline, miniflow_equal, ...), because:
*
* - Since we are dealing exclusively with miniflows created by
* miniflow_extract(), if the map is different the miniflow is different.
* Therefore we can be faster by comparing the map and the miniflow in a
* single memcmp().
* - These functions can be inlined by the compiler. */
/* Given the number of bits set in miniflow's maps, returns the size of the
* 'netdev_flow_key.mf' */
static inline size_t
netdev_flow_key_size(size_t flow_u64s)
{
return sizeof(struct miniflow) + MINIFLOW_VALUES_SIZE(flow_u64s);
}
static inline bool
netdev_flow_key_equal(const struct netdev_flow_key *a,
const struct netdev_flow_key *b)
{
/* 'b->len' may be not set yet. */
return a->hash == b->hash && !memcmp(&a->mf, &b->mf, a->len);
}
/* Used to compare 'netdev_flow_key' in the exact match cache to a miniflow.
* The maps are compared bitwise, so both 'key->mf' 'mf' must have been
* generated by miniflow_extract. */
static inline bool
netdev_flow_key_equal_mf(const struct netdev_flow_key *key,
const struct miniflow *mf)
{
return !memcmp(&key->mf, mf, key->len);
}
static inline void
netdev_flow_key_clone(struct netdev_flow_key *dst,
const struct netdev_flow_key *src)
{
memcpy(dst, src,
offsetof(struct netdev_flow_key, mf) + src->len);
}
/* Slow. */
static void
netdev_flow_key_from_flow(struct netdev_flow_key *dst,
const struct flow *src)
{
struct dp_packet packet;
uint64_t buf_stub[512 / 8];
dp_packet_use_stub(&packet, buf_stub, sizeof buf_stub);
pkt_metadata_from_flow(&packet.md, src);
flow_compose(&packet, src);
miniflow_extract(&packet, &dst->mf);
dp_packet_uninit(&packet);
dst->len = netdev_flow_key_size(miniflow_n_values(&dst->mf));
dst->hash = 0; /* Not computed yet. */
}
/* Initialize a netdev_flow_key 'mask' from 'match'. */
static inline void
netdev_flow_mask_init(struct netdev_flow_key *mask,
const struct match *match)
{
uint64_t *dst = miniflow_values(&mask->mf);
struct flowmap fmap;
uint32_t hash = 0;
size_t idx;
/* Only check masks that make sense for the flow. */
flow_wc_map(&match->flow, &fmap);
flowmap_init(&mask->mf.map);
FLOWMAP_FOR_EACH_INDEX(idx, fmap) {
uint64_t mask_u64 = flow_u64_value(&match->wc.masks, idx);
if (mask_u64) {
flowmap_set(&mask->mf.map, idx, 1);
*dst++ = mask_u64;
hash = hash_add64(hash, mask_u64);
}
}
map_t map;
FLOWMAP_FOR_EACH_MAP (map, mask->mf.map) {
hash = hash_add64(hash, map);
}
size_t n = dst - miniflow_get_values(&mask->mf);
mask->hash = hash_finish(hash, n * 8);
mask->len = netdev_flow_key_size(n);
}
/* Initializes 'dst' as a copy of 'flow' masked with 'mask'. */
static inline void
netdev_flow_key_init_masked(struct netdev_flow_key *dst,
const struct flow *flow,
const struct netdev_flow_key *mask)
{
uint64_t *dst_u64 = miniflow_values(&dst->mf);
const uint64_t *mask_u64 = miniflow_get_values(&mask->mf);
uint32_t hash = 0;
uint64_t value;
dst->len = mask->len;
dst->mf = mask->mf; /* Copy maps. */
FLOW_FOR_EACH_IN_MAPS(value, flow, mask->mf.map) {
*dst_u64 = value & *mask_u64++;
hash = hash_add64(hash, *dst_u64++);
}
dst->hash = hash_finish(hash,
(dst_u64 - miniflow_get_values(&dst->mf)) * 8);
}
/* Iterate through netdev_flow_key TNL u64 values specified by 'FLOWMAP'. */
#define NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(VALUE, KEY, FLOWMAP) \
MINIFLOW_FOR_EACH_IN_FLOWMAP(VALUE, &(KEY)->mf, FLOWMAP)
/* Returns a hash value for the bits of 'key' where there are 1-bits in
* 'mask'. */
static inline uint32_t
netdev_flow_key_hash_in_mask(const struct netdev_flow_key *key,
const struct netdev_flow_key *mask)
{
const uint64_t *p = miniflow_get_values(&mask->mf);
uint32_t hash = 0;
uint64_t value;
NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(value, key, mask->mf.map) {
hash = hash_add64(hash, value & *p++);
}
return hash_finish(hash, (p - miniflow_get_values(&mask->mf)) * 8);
}
static inline bool
emc_entry_alive(struct emc_entry *ce)
{
return ce->flow && !ce->flow->dead;
}
static void
emc_clear_entry(struct emc_entry *ce)
{
if (ce->flow) {
dp_netdev_flow_unref(ce->flow);
ce->flow = NULL;
}
}
static inline void
emc_change_entry(struct emc_entry *ce, struct dp_netdev_flow *flow,
const struct netdev_flow_key *key)
{
if (ce->flow != flow) {
if (ce->flow) {
dp_netdev_flow_unref(ce->flow);
}
if (dp_netdev_flow_ref(flow)) {
ce->flow = flow;
} else {
ce->flow = NULL;
}
}
if (key) {
netdev_flow_key_clone(&ce->key, key);
}
}
static inline void
emc_insert(struct emc_cache *cache, const struct netdev_flow_key *key,
struct dp_netdev_flow *flow)
{
struct emc_entry *to_be_replaced = NULL;
struct emc_entry *current_entry;
EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
if (netdev_flow_key_equal(&current_entry->key, key)) {
/* We found the entry with the 'mf' miniflow */
emc_change_entry(current_entry, flow, NULL);
return;
}
/* Replacement policy: put the flow in an empty (not alive) entry, or
* in the first entry where it can be */
if (!to_be_replaced
|| (emc_entry_alive(to_be_replaced)
&& !emc_entry_alive(current_entry))
|| current_entry->key.hash < to_be_replaced->key.hash) {
to_be_replaced = current_entry;
}
}
/* We didn't find the miniflow in the cache.
* The 'to_be_replaced' entry is where the new flow will be stored */
emc_change_entry(to_be_replaced, flow, key);
}
static inline struct dp_netdev_flow *
emc_lookup(struct emc_cache *cache, const struct netdev_flow_key *key)
{
struct emc_entry *current_entry;
EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
if (current_entry->key.hash == key->hash
&& emc_entry_alive(current_entry)
&& netdev_flow_key_equal_mf(&current_entry->key, &key->mf)) {
/* We found the entry with the 'key->mf' miniflow */
return current_entry->flow;
}
}
return NULL;
}
static struct dp_netdev_flow *
dp_netdev_pmd_lookup_flow(const struct dp_netdev_pmd_thread *pmd,
const struct netdev_flow_key *key)
{
struct dp_netdev_flow *netdev_flow;
struct dpcls_rule *rule;
dpcls_lookup(&pmd->cls, key, &rule, 1);
netdev_flow = dp_netdev_flow_cast(rule);
return netdev_flow;
}
static struct dp_netdev_flow *
dp_netdev_pmd_find_flow(const struct dp_netdev_pmd_thread *pmd,
const ovs_u128 *ufidp, const struct nlattr *key,
size_t key_len)
{
struct dp_netdev_flow *netdev_flow;
struct flow flow;
ovs_u128 ufid;
/* If a UFID is not provided, determine one based on the key. */
if (!ufidp && key && key_len
&& !dpif_netdev_flow_from_nlattrs(key, key_len, &flow)) {
dpif_flow_hash(pmd->dp->dpif, &flow, sizeof flow, &ufid);
ufidp = &ufid;
}
if (ufidp) {
CMAP_FOR_EACH_WITH_HASH (netdev_flow, node, dp_netdev_flow_hash(ufidp),
&pmd->flow_table) {
if (ovs_u128_equals(&netdev_flow->ufid, ufidp)) {
return netdev_flow;
}
}
}
return NULL;
}
static void
get_dpif_flow_stats(const struct dp_netdev_flow *netdev_flow_,
struct dpif_flow_stats *stats)
{
struct dp_netdev_flow *netdev_flow;
unsigned long long n;
long long used;
uint16_t flags;
netdev_flow = CONST_CAST(struct dp_netdev_flow *, netdev_flow_);
atomic_read_relaxed(&netdev_flow->stats.packet_count, &n);
stats->n_packets = n;
atomic_read_relaxed(&netdev_flow->stats.byte_count, &n);
stats->n_bytes = n;
atomic_read_relaxed(&netdev_flow->stats.used, &used);
stats->used = used;
atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
stats->tcp_flags = flags;
}
/* Converts to the dpif_flow format, using 'key_buf' and 'mask_buf' for
* storing the netlink-formatted key/mask. 'key_buf' may be the same as
* 'mask_buf'. Actions will be returned without copying, by relying on RCU to
* protect them. */
static void
dp_netdev_flow_to_dpif_flow(const struct dp_netdev_flow *netdev_flow,
struct ofpbuf *key_buf, struct ofpbuf *mask_buf,
struct dpif_flow *flow, bool terse)
{
if (terse) {
memset(flow, 0, sizeof *flow);
} else {
struct flow_wildcards wc;
struct dp_netdev_actions *actions;
size_t offset;
struct odp_flow_key_parms odp_parms = {
.flow = &netdev_flow->flow,
.mask = &wc.masks,
.support = dp_netdev_support,
};
miniflow_expand(&netdev_flow->cr.mask->mf, &wc.masks);
/* Key */
offset = key_buf->size;
flow->key = ofpbuf_tail(key_buf);
odp_parms.odp_in_port = netdev_flow->flow.in_port.odp_port;
odp_flow_key_from_flow(&odp_parms, key_buf);
flow->key_len = key_buf->size - offset;
/* Mask */
offset = mask_buf->size;
flow->mask = ofpbuf_tail(mask_buf);
odp_parms.odp_in_port = wc.masks.in_port.odp_port;
odp_parms.key_buf = key_buf;
odp_flow_key_from_mask(&odp_parms, mask_buf);
flow->mask_len = mask_buf->size - offset;
/* Actions */
actions = dp_netdev_flow_get_actions(netdev_flow);
flow->actions = actions->actions;
flow->actions_len = actions->size;
}
flow->ufid = netdev_flow->ufid;
flow->ufid_present = true;
flow->pmd_id = netdev_flow->pmd_id;
get_dpif_flow_stats(netdev_flow, &flow->stats);
}
static int
dpif_netdev_mask_from_nlattrs(const struct nlattr *key, uint32_t key_len,
const struct nlattr *mask_key,
uint32_t mask_key_len, const struct flow *flow,
struct flow_wildcards *wc)
{
enum odp_key_fitness fitness;
fitness = odp_flow_key_to_mask_udpif(mask_key, mask_key_len, key,
key_len, wc, flow);
if (fitness) {
/* This should not happen: it indicates that
* odp_flow_key_from_mask() and odp_flow_key_to_mask()
* disagree on the acceptable form of a mask. Log the problem
* as an error, with enough details to enable debugging. */
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
if (!VLOG_DROP_ERR(&rl)) {
struct ds s;
ds_init(&s);
odp_flow_format(key, key_len, mask_key, mask_key_len, NULL, &s,
true);
VLOG_ERR("internal error parsing flow mask %s (%s)",
ds_cstr(&s), odp_key_fitness_to_string(fitness));
ds_destroy(&s);
}
return EINVAL;
}
return 0;
}
static int
dpif_netdev_flow_from_nlattrs(const struct nlattr *key, uint32_t key_len,
struct flow *flow)
{
odp_port_t in_port;
dpif-netdev: Translate Geneve options per-flow, not per-packet. The kernel implementation of Geneve options stores the TLV option data in the flow exactly as received, without any further parsing. This is then translated to known options for the purposes of matching on flow setup (which will then install a datapath flow in the form the kernel is expecting). The userspace implementation behaves a little bit differently - it looks up known options as each packet is received. The reason for this is there is a much tighter coupling between datapath and flow translation and the representation is generally expected to be the same. This works but it incurs work on a per-packet basis that could be done per-flow instead. This introduces a small translation step for Geneve packets between datapath and flow lookup for the userspace datapath in order to allow the same kind of processing that the kernel does. A side effect of this is that unknown options are now shown when flows dumped via ovs-appctl dpif/dump-flows, similar to the kernel. There is a second benefit to this as well: for some operations it is preferable to keep the options exactly as they were received on the wire, which this enables. One example is that for packets that are executed from ofproto-dpif-upcall to the datapath, this avoids the translation of Geneve metadata. Since this conversion is potentially lossy (for unknown options), keeping everything in the same format removes the possibility of dropping options if the packet comes back up to userspace and the Geneve option translation table has changed. To help with these types of operations, most functions can understand both formats of data and seamlessly do the right thing. Signed-off-by: Jesse Gross <jesse@nicira.com> Acked-by: Jarno Rajahalme <jrajahalme@nicira.com>
2015-06-29 18:01:59 -07:00
if (odp_flow_key_to_flow_udpif(key, key_len, flow)) {
/* This should not happen: it indicates that odp_flow_key_from_flow()
* and odp_flow_key_to_flow() disagree on the acceptable form of a
* flow. Log the problem as an error, with enough details to enable
* debugging. */
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
if (!VLOG_DROP_ERR(&rl)) {
struct ds s;
ds_init(&s);
odp_flow_format(key, key_len, NULL, 0, NULL, &s, true);
VLOG_ERR("internal error parsing flow key %s", ds_cstr(&s));
ds_destroy(&s);
}
return EINVAL;
}
in_port = flow->in_port.odp_port;
if (!is_valid_port_number(in_port) && in_port != ODPP_NONE) {
return EINVAL;
}
Add support for connection tracking. This patch adds a new action and fields to OVS that allow connection tracking to be performed. This support works in conjunction with the Linux kernel support merged into the Linux-4.3 development cycle. Packets have two possible states with respect to connection tracking: Untracked packets have not previously passed through the connection tracker, while tracked packets have previously been through the connection tracker. For OpenFlow pipeline processing, untracked packets can become tracked, and they will remain tracked until the end of the pipeline. Tracked packets cannot become untracked. Connections can be unknown, uncommitted, or committed. Packets which are untracked have unknown connection state. To know the connection state, the packet must become tracked. Uncommitted connections have no connection state stored about them, so it is only possible for the connection tracker to identify whether they are a new connection or whether they are invalid. Committed connections have connection state stored beyond the lifetime of the packet, which allows later packets in the same connection to be identified as part of the same established connection, or related to an existing connection - for instance ICMP error responses. The new 'ct' action transitions the packet from "untracked" to "tracked" by sending this flow through the connection tracker. The following parameters are supported initally: - "commit": When commit is executed, the connection moves from uncommitted state to committed state. This signals that information about the connection should be stored beyond the lifetime of the packet within the pipeline. This allows future packets in the same connection to be recognized as part of the same "established" (est) connection, as well as identifying packets in the reply (rpl) direction, or packets related to an existing connection (rel). - "zone=[u16|NXM]": Perform connection tracking in the zone specified. Each zone is an independent connection tracking context. When the "commit" parameter is used, the connection will only be committed in the specified zone, and not in other zones. This is 0 by default. - "table=NUMBER": Fork pipeline processing in two. The original instance of the packet will continue processing the current actions list as an untracked packet. An additional instance of the packet will be sent to the connection tracker, which will be re-injected into the OpenFlow pipeline to resume processing in the specified table, with the ct_state and other ct match fields set. If the table is not specified, then the packet is submitted to the connection tracker, but the pipeline does not fork and the ct match fields are not populated. It is strongly recommended to specify a table later than the current table to prevent loops. When the "table" option is used, the packet that continues processing in the specified table will have the ct_state populated. The ct_state may have any of the following flags set: - Tracked (trk): Connection tracking has occurred. - Reply (rpl): The flow is in the reply direction. - Invalid (inv): The connection tracker couldn't identify the connection. - New (new): This is the beginning of a new connection. - Established (est): This is part of an already existing connection. - Related (rel): This connection is related to an existing connection. For more information, consult the ovs-ofctl(8) man pages. Below is a simple example flow table to allow outbound TCP traffic from port 1 and drop traffic from port 2 that was not initiated by port 1: table=0,priority=1,action=drop table=0,arp,action=normal table=0,in_port=1,tcp,ct_state=-trk,action=ct(commit,zone=9),2 table=0,in_port=2,tcp,ct_state=-trk,action=ct(zone=9,table=1) table=1,in_port=2,ct_state=+trk+est,tcp,action=1 table=1,in_port=2,ct_state=+trk+new,tcp,action=drop Based on original design by Justin Pettit, contributions from Thomas Graf and Daniele Di Proietto. Signed-off-by: Joe Stringer <joestringer@nicira.com> Acked-by: Jarno Rajahalme <jrajahalme@nicira.com> Acked-by: Ben Pfaff <blp@nicira.com>
2015-08-11 10:56:09 -07:00
/* Userspace datapath doesn't support conntrack. */
if (flow->ct_state || flow->ct_zone || flow->ct_mark
|| !ovs_u128_is_zero(&flow->ct_label)) {
Add support for connection tracking. This patch adds a new action and fields to OVS that allow connection tracking to be performed. This support works in conjunction with the Linux kernel support merged into the Linux-4.3 development cycle. Packets have two possible states with respect to connection tracking: Untracked packets have not previously passed through the connection tracker, while tracked packets have previously been through the connection tracker. For OpenFlow pipeline processing, untracked packets can become tracked, and they will remain tracked until the end of the pipeline. Tracked packets cannot become untracked. Connections can be unknown, uncommitted, or committed. Packets which are untracked have unknown connection state. To know the connection state, the packet must become tracked. Uncommitted connections have no connection state stored about them, so it is only possible for the connection tracker to identify whether they are a new connection or whether they are invalid. Committed connections have connection state stored beyond the lifetime of the packet, which allows later packets in the same connection to be identified as part of the same established connection, or related to an existing connection - for instance ICMP error responses. The new 'ct' action transitions the packet from "untracked" to "tracked" by sending this flow through the connection tracker. The following parameters are supported initally: - "commit": When commit is executed, the connection moves from uncommitted state to committed state. This signals that information about the connection should be stored beyond the lifetime of the packet within the pipeline. This allows future packets in the same connection to be recognized as part of the same "established" (est) connection, as well as identifying packets in the reply (rpl) direction, or packets related to an existing connection (rel). - "zone=[u16|NXM]": Perform connection tracking in the zone specified. Each zone is an independent connection tracking context. When the "commit" parameter is used, the connection will only be committed in the specified zone, and not in other zones. This is 0 by default. - "table=NUMBER": Fork pipeline processing in two. The original instance of the packet will continue processing the current actions list as an untracked packet. An additional instance of the packet will be sent to the connection tracker, which will be re-injected into the OpenFlow pipeline to resume processing in the specified table, with the ct_state and other ct match fields set. If the table is not specified, then the packet is submitted to the connection tracker, but the pipeline does not fork and the ct match fields are not populated. It is strongly recommended to specify a table later than the current table to prevent loops. When the "table" option is used, the packet that continues processing in the specified table will have the ct_state populated. The ct_state may have any of the following flags set: - Tracked (trk): Connection tracking has occurred. - Reply (rpl): The flow is in the reply direction. - Invalid (inv): The connection tracker couldn't identify the connection. - New (new): This is the beginning of a new connection. - Established (est): This is part of an already existing connection. - Related (rel): This connection is related to an existing connection. For more information, consult the ovs-ofctl(8) man pages. Below is a simple example flow table to allow outbound TCP traffic from port 1 and drop traffic from port 2 that was not initiated by port 1: table=0,priority=1,action=drop table=0,arp,action=normal table=0,in_port=1,tcp,ct_state=-trk,action=ct(commit,zone=9),2 table=0,in_port=2,tcp,ct_state=-trk,action=ct(zone=9,table=1) table=1,in_port=2,ct_state=+trk+est,tcp,action=1 table=1,in_port=2,ct_state=+trk+new,tcp,action=drop Based on original design by Justin Pettit, contributions from Thomas Graf and Daniele Di Proietto. Signed-off-by: Joe Stringer <joestringer@nicira.com> Acked-by: Jarno Rajahalme <jrajahalme@nicira.com> Acked-by: Ben Pfaff <blp@nicira.com>
2015-08-11 10:56:09 -07:00
return EINVAL;
}
return 0;
}
static int
dpif_netdev_flow_get(const struct dpif *dpif, const struct dpif_flow_get *get)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
struct dp_netdev_flow *netdev_flow;
struct dp_netdev_pmd_thread *pmd;
unsigned pmd_id = get->pmd_id == PMD_ID_NULL
? NON_PMD_CORE_ID : get->pmd_id;
int error = 0;
pmd = dp_netdev_get_pmd(dp, pmd_id);
if (!pmd) {
return EINVAL;
}
netdev_flow = dp_netdev_pmd_find_flow(pmd, get->ufid, get->key,
get->key_len);
if (netdev_flow) {
dp_netdev_flow_to_dpif_flow(netdev_flow, get->buffer, get->buffer,
get->flow, false);
} else {
error = ENOENT;
}
dp_netdev_pmd_unref(pmd);
return error;
}
static struct dp_netdev_flow *
dp_netdev_flow_add(struct dp_netdev_pmd_thread *pmd,
struct match *match, const ovs_u128 *ufid,
const struct nlattr *actions, size_t actions_len)
OVS_REQUIRES(pmd->flow_mutex)
{
struct dp_netdev_flow *flow;
struct netdev_flow_key mask;
netdev_flow_mask_init(&mask, match);
/* Make sure wc does not have metadata. */
ovs_assert(!FLOWMAP_HAS_FIELD(&mask.mf.map, metadata)
&& !FLOWMAP_HAS_FIELD(&mask.mf.map, regs));
/* Do not allocate extra space. */
flow = xmalloc(sizeof *flow - sizeof flow->cr.flow.mf + mask.len);
memset(&flow->stats, 0, sizeof flow->stats);
flow->dead = false;
flow->batch = NULL;
*CONST_CAST(unsigned *, &flow->pmd_id) = pmd->core_id;
*CONST_CAST(struct flow *, &flow->flow) = match->flow;
*CONST_CAST(ovs_u128 *, &flow->ufid) = *ufid;
ovs_refcount_init(&flow->ref_cnt);
ovsrcu_set(&flow->actions, dp_netdev_actions_create(actions, actions_len));
netdev_flow_key_init_masked(&flow->cr.flow, &match->flow, &mask);
dpcls_insert(&pmd->cls, &flow->cr, &mask);
cmap_insert(&pmd->flow_table, CONST_CAST(struct cmap_node *, &flow->node),
dp_netdev_flow_hash(&flow->ufid));
if (OVS_UNLIKELY(VLOG_IS_DBG_ENABLED())) {
struct match match;
struct ds ds = DS_EMPTY_INITIALIZER;
match.tun_md.valid = false;
match.flow = flow->flow;
miniflow_expand(&flow->cr.mask->mf, &match.wc.masks);
ds_put_cstr(&ds, "flow_add: ");
odp_format_ufid(ufid, &ds);
ds_put_cstr(&ds, " ");
match_format(&match, &ds, OFP_DEFAULT_PRIORITY);
ds_put_cstr(&ds, ", actions:");
format_odp_actions(&ds, actions, actions_len);
VLOG_DBG_RL(&upcall_rl, "%s", ds_cstr(&ds));
ds_destroy(&ds);
}
return flow;
}
static int
dpif_netdev_flow_put(struct dpif *dpif, const struct dpif_flow_put *put)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
struct dp_netdev_flow *netdev_flow;
struct netdev_flow_key key;
struct dp_netdev_pmd_thread *pmd;
struct match match;
ovs_u128 ufid;
unsigned pmd_id = put->pmd_id == PMD_ID_NULL
? NON_PMD_CORE_ID : put->pmd_id;
int error;
error = dpif_netdev_flow_from_nlattrs(put->key, put->key_len, &match.flow);
if (error) {
return error;
}
error = dpif_netdev_mask_from_nlattrs(put->key, put->key_len,
put->mask, put->mask_len,
&match.flow, &match.wc);
if (error) {
return error;
}
pmd = dp_netdev_get_pmd(dp, pmd_id);
if (!pmd) {
return EINVAL;
}
/* Must produce a netdev_flow_key for lookup.
* This interface is no longer performance critical, since it is not used
* for upcall processing any more. */
netdev_flow_key_from_flow(&key, &match.flow);
if (put->ufid) {
ufid = *put->ufid;
} else {
dpif_flow_hash(dpif, &match.flow, sizeof match.flow, &ufid);
}
ovs_mutex_lock(&pmd->flow_mutex);
netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &key);
if (!netdev_flow) {
if (put->flags & DPIF_FP_CREATE) {
if (cmap_count(&pmd->flow_table) < MAX_FLOWS) {
if (put->stats) {
memset(put->stats, 0, sizeof *put->stats);
}
dp_netdev_flow_add(pmd, &match, &ufid, put->actions,
put->actions_len);
error = 0;
} else {
error = EFBIG;
}
} else {
error = ENOENT;
}
} else {
if (put->flags & DPIF_FP_MODIFY
&& flow_equal(&match.flow, &netdev_flow->flow)) {
struct dp_netdev_actions *new_actions;
struct dp_netdev_actions *old_actions;
new_actions = dp_netdev_actions_create(put->actions,
put->actions_len);
old_actions = dp_netdev_flow_get_actions(netdev_flow);
ovsrcu_set(&netdev_flow->actions, new_actions);
if (put->stats) {
get_dpif_flow_stats(netdev_flow, put->stats);
}
if (put->flags & DPIF_FP_ZERO_STATS) {
/* XXX: The userspace datapath uses thread local statistics
* (for flows), which should be updated only by the owning
* thread. Since we cannot write on stats memory here,
* we choose not to support this flag. Please note:
* - This feature is currently used only by dpctl commands with
* option --clear.
* - Should the need arise, this operation can be implemented
* by keeping a base value (to be update here) for each
* counter, and subtracting it before outputting the stats */
error = EOPNOTSUPP;
}
ovsrcu_postpone(dp_netdev_actions_free, old_actions);
} else if (put->flags & DPIF_FP_CREATE) {
error = EEXIST;
} else {
/* Overlapping flow. */
error = EINVAL;
}
}
ovs_mutex_unlock(&pmd->flow_mutex);
dp_netdev_pmd_unref(pmd);
return error;
}
static int
dpif_netdev_flow_del(struct dpif *dpif, const struct dpif_flow_del *del)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
struct dp_netdev_flow *netdev_flow;
struct dp_netdev_pmd_thread *pmd;
unsigned pmd_id = del->pmd_id == PMD_ID_NULL
? NON_PMD_CORE_ID : del->pmd_id;
int error = 0;
pmd = dp_netdev_get_pmd(dp, pmd_id);
if (!pmd) {
return EINVAL;
}
ovs_mutex_lock(&pmd->flow_mutex);
netdev_flow = dp_netdev_pmd_find_flow(pmd, del->ufid, del->key,
del->key_len);
if (netdev_flow) {
if (del->stats) {
get_dpif_flow_stats(netdev_flow, del->stats);
}
dp_netdev_pmd_remove_flow(pmd, netdev_flow);
} else {
error = ENOENT;
}
ovs_mutex_unlock(&pmd->flow_mutex);
dp_netdev_pmd_unref(pmd);
return error;
}
struct dpif_netdev_flow_dump {
struct dpif_flow_dump up;
struct cmap_position poll_thread_pos;
struct cmap_position flow_pos;
struct dp_netdev_pmd_thread *cur_pmd;
int status;
struct ovs_mutex mutex;
};
static struct dpif_netdev_flow_dump *
dpif_netdev_flow_dump_cast(struct dpif_flow_dump *dump)
{
return CONTAINER_OF(dump, struct dpif_netdev_flow_dump, up);
}
static struct dpif_flow_dump *
dpif_netdev_flow_dump_create(const struct dpif *dpif_, bool terse)
{
struct dpif_netdev_flow_dump *dump;
dump = xzalloc(sizeof *dump);
dpif_flow_dump_init(&dump->up, dpif_);
dump->up.terse = terse;
ovs_mutex_init(&dump->mutex);
return &dump->up;
}
static int
dpif_netdev_flow_dump_destroy(struct dpif_flow_dump *dump_)
{
struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
ovs_mutex_destroy(&dump->mutex);
free(dump);
datapath: Change listing flows to use an iterator concept. One of the goals for Open vSwitch is to decouple kernel and userspace software, so that either one can be upgraded or rolled back independent of the other. To do this in full generality, it must be possible to change the kernel's idea of the flow key separately from the userspace version. In turn, that means that flow keys must become variable-length. This does not, however, fit in well with the ODP_FLOW_LIST ioctl in its current form, because that would require userspace to know how much space to allocate for each flow's key in advance, or to allocate as much space as could possibly be needed. Neither choice is very attractive. This commit prepares for a different solution, by replacing ODP_FLOW_LIST by a new ioctl ODP_FLOW_DUMP that retrieves a single flow from the datapath on each call. It is much cleaner to allocate the maximum amount of space for a single flow key than to do so for possibly a very large number of flow keys. As a side effect, this patch also fixes a race condition that sometimes made "ovs-dpctl dump-flows" print an error: previously, flows were listed and then their actions were retrieved, which left a window in which ovs-vswitchd could delete the flow. Now dumping a flow and its actions is a single step, closing that window. Dumping all of the flows in a datapath is no longer an atomic step, so now it is possible to miss some flows or see a single flow twice during iteration, if the flow table is modified by another process. It doesn't look like this should be a problem for ovs-vswitchd. It would be faster to retrieve a number of flows in batch instead of just one at a time, but that will naturally happen later when the kernel datapath interface is changed to use Netlink, so this patch does not bother with it. Signed-off-by: Ben Pfaff <blp@nicira.com> Acked-by: Jesse Gross <jesse@nicira.com>
2010-12-28 10:39:52 -08:00
return 0;
}
struct dpif_netdev_flow_dump_thread {
struct dpif_flow_dump_thread up;
struct dpif_netdev_flow_dump *dump;
struct odputil_keybuf keybuf[FLOW_DUMP_MAX_BATCH];
struct odputil_keybuf maskbuf[FLOW_DUMP_MAX_BATCH];
};
static struct dpif_netdev_flow_dump_thread *
dpif_netdev_flow_dump_thread_cast(struct dpif_flow_dump_thread *thread)
{
return CONTAINER_OF(thread, struct dpif_netdev_flow_dump_thread, up);
}
static struct dpif_flow_dump_thread *
dpif_netdev_flow_dump_thread_create(struct dpif_flow_dump *dump_)
{
struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
struct dpif_netdev_flow_dump_thread *thread;
thread = xmalloc(sizeof *thread);
dpif_flow_dump_thread_init(&thread->up, &dump->up);
thread->dump = dump;
return &thread->up;
}
static void
dpif_netdev_flow_dump_thread_destroy(struct dpif_flow_dump_thread *thread_)
{
struct dpif_netdev_flow_dump_thread *thread
= dpif_netdev_flow_dump_thread_cast(thread_);
free(thread);
}
datapath: Change listing flows to use an iterator concept. One of the goals for Open vSwitch is to decouple kernel and userspace software, so that either one can be upgraded or rolled back independent of the other. To do this in full generality, it must be possible to change the kernel's idea of the flow key separately from the userspace version. In turn, that means that flow keys must become variable-length. This does not, however, fit in well with the ODP_FLOW_LIST ioctl in its current form, because that would require userspace to know how much space to allocate for each flow's key in advance, or to allocate as much space as could possibly be needed. Neither choice is very attractive. This commit prepares for a different solution, by replacing ODP_FLOW_LIST by a new ioctl ODP_FLOW_DUMP that retrieves a single flow from the datapath on each call. It is much cleaner to allocate the maximum amount of space for a single flow key than to do so for possibly a very large number of flow keys. As a side effect, this patch also fixes a race condition that sometimes made "ovs-dpctl dump-flows" print an error: previously, flows were listed and then their actions were retrieved, which left a window in which ovs-vswitchd could delete the flow. Now dumping a flow and its actions is a single step, closing that window. Dumping all of the flows in a datapath is no longer an atomic step, so now it is possible to miss some flows or see a single flow twice during iteration, if the flow table is modified by another process. It doesn't look like this should be a problem for ovs-vswitchd. It would be faster to retrieve a number of flows in batch instead of just one at a time, but that will naturally happen later when the kernel datapath interface is changed to use Netlink, so this patch does not bother with it. Signed-off-by: Ben Pfaff <blp@nicira.com> Acked-by: Jesse Gross <jesse@nicira.com>
2010-12-28 10:39:52 -08:00
static int
dpif_netdev_flow_dump_next(struct dpif_flow_dump_thread *thread_,
struct dpif_flow *flows, int max_flows)
{
struct dpif_netdev_flow_dump_thread *thread
= dpif_netdev_flow_dump_thread_cast(thread_);
struct dpif_netdev_flow_dump *dump = thread->dump;
struct dp_netdev_flow *netdev_flows[FLOW_DUMP_MAX_BATCH];
int n_flows = 0;
int i;
ovs_mutex_lock(&dump->mutex);
if (!dump->status) {
struct dpif_netdev *dpif = dpif_netdev_cast(thread->up.dpif);
struct dp_netdev *dp = get_dp_netdev(&dpif->dpif);
struct dp_netdev_pmd_thread *pmd = dump->cur_pmd;
int flow_limit = MIN(max_flows, FLOW_DUMP_MAX_BATCH);
/* First call to dump_next(), extracts the first pmd thread.
* If there is no pmd thread, returns immediately. */
if (!pmd) {
pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
if (!pmd) {
ovs_mutex_unlock(&dump->mutex);
return n_flows;
}
}
do {
for (n_flows = 0; n_flows < flow_limit; n_flows++) {
struct cmap_node *node;
node = cmap_next_position(&pmd->flow_table, &dump->flow_pos);
if (!node) {
break;
}
netdev_flows[n_flows] = CONTAINER_OF(node,
struct dp_netdev_flow,
node);
}
/* When finishing dumping the current pmd thread, moves to
* the next. */
if (n_flows < flow_limit) {
memset(&dump->flow_pos, 0, sizeof dump->flow_pos);
dp_netdev_pmd_unref(pmd);
pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
if (!pmd) {
dump->status = EOF;
break;
}
}
/* Keeps the reference to next caller. */
dump->cur_pmd = pmd;
/* If the current dump is empty, do not exit the loop, since the
* remaining pmds could have flows to be dumped. Just dumps again
* on the new 'pmd'. */
} while (!n_flows);
}
ovs_mutex_unlock(&dump->mutex);
for (i = 0; i < n_flows; i++) {
struct odputil_keybuf *maskbuf = &thread->maskbuf[i];
struct odputil_keybuf *keybuf = &thread->keybuf[i];
struct dp_netdev_flow *netdev_flow = netdev_flows[i];
struct dpif_flow *f = &flows[i];
struct ofpbuf key, mask;
ofpbuf_use_stack(&key, keybuf, sizeof *keybuf);
ofpbuf_use_stack(&mask, maskbuf, sizeof *maskbuf);
dp_netdev_flow_to_dpif_flow(netdev_flow, &key, &mask, f,
dump->up.terse);
}
return n_flows;
}
static int
dpif_netdev_execute(struct dpif *dpif, struct dpif_execute *execute)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
struct dp_netdev *dp = get_dp_netdev(dpif);
struct dp_netdev_pmd_thread *pmd;
struct dp_packet *pp;
if (dp_packet_size(execute->packet) < ETH_HEADER_LEN ||
dp_packet_size(execute->packet) > UINT16_MAX) {
return EINVAL;
}
/* Tries finding the 'pmd'. If NULL is returned, that means
* the current thread is a non-pmd thread and should use
* dp_netdev_get_pmd(dp, NON_PMD_CORE_ID). */
pmd = ovsthread_getspecific(dp->per_pmd_key);
if (!pmd) {
pmd = dp_netdev_get_pmd(dp, NON_PMD_CORE_ID);
}
/* If the current thread is non-pmd thread, acquires
* the 'non_pmd_mutex'. */
if (pmd->core_id == NON_PMD_CORE_ID) {
ovs_mutex_lock(&dp->non_pmd_mutex);
ovs_mutex_lock(&dp->port_mutex);
}
pp = execute->packet;
dp_netdev_execute_actions(pmd, &pp, 1, false, execute->actions,
execute->actions_len);
if (pmd->core_id == NON_PMD_CORE_ID) {
dp_netdev_pmd_unref(pmd);
ovs_mutex_unlock(&dp->port_mutex);
ovs_mutex_unlock(&dp->non_pmd_mutex);
}
return 0;
}
static void
dpif_netdev_operate(struct dpif *dpif, struct dpif_op **ops, size_t n_ops)
{
size_t i;
for (i = 0; i < n_ops; i++) {
struct dpif_op *op = ops[i];
switch (op->type) {
case DPIF_OP_FLOW_PUT:
op->error = dpif_netdev_flow_put(dpif, &op->u.flow_put);
break;
case DPIF_OP_FLOW_DEL:
op->error = dpif_netdev_flow_del(dpif, &op->u.flow_del);
break;
case DPIF_OP_EXECUTE:
op->error = dpif_netdev_execute(dpif, &op->u.execute);
break;
case DPIF_OP_FLOW_GET:
op->error = dpif_netdev_flow_get(dpif, &op->u.flow_get);
break;
}
}
}
/* Returns true if the configuration for rx queues or cpu mask
* is changed. */
static bool
pmd_config_changed(const struct dp_netdev *dp, const char *cmask)
{
struct dp_netdev_port *port;
CMAP_FOR_EACH (port, node, &dp->ports) {
struct netdev *netdev = port->netdev;
int requested_n_rxq = netdev_requested_n_rxq(netdev);
if (netdev_is_pmd(netdev)
&& port->latest_requested_n_rxq != requested_n_rxq) {
return true;
}
}
if (dp->pmd_cmask != NULL && cmask != NULL) {
return strcmp(dp->pmd_cmask, cmask);
} else {
return (dp->pmd_cmask != NULL || cmask != NULL);
}
}
/* Resets pmd threads if the configuration for 'rxq's or cpu mask changes. */
static int
dpif_netdev_pmd_set(struct dpif *dpif, const char *cmask)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
if (pmd_config_changed(dp, cmask)) {
struct dp_netdev_port *port;
dp_netdev_destroy_all_pmds(dp);
CMAP_FOR_EACH (port, node, &dp->ports) {
struct netdev *netdev = port->netdev;
int requested_n_rxq = netdev_requested_n_rxq(netdev);
if (netdev_is_pmd(port->netdev)
&& port->latest_requested_n_rxq != requested_n_rxq) {
int i, err;
/* Closes the existing 'rxq's. */
for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
netdev_rxq_close(port->rxq[i]);
port->rxq[i] = NULL;
}
/* Sets the new rx queue config. */
err = netdev_set_multiq(port->netdev,
ovs_numa_get_n_cores() + 1,
requested_n_rxq);
if (err && (err != EOPNOTSUPP)) {
VLOG_ERR("Failed to set dpdk interface %s rx_queue to:"
" %u", netdev_get_name(port->netdev),
requested_n_rxq);
return err;
}
port->latest_requested_n_rxq = requested_n_rxq;
/* If the set_multiq() above succeeds, reopens the 'rxq's. */
port->rxq = xrealloc(port->rxq, sizeof *port->rxq
* netdev_n_rxq(port->netdev));
for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
netdev_rxq_open(port->netdev, &port->rxq[i], i);
}
}
}
/* Reconfigures the cpu mask. */
ovs_numa_set_cpu_mask(cmask);
free(dp->pmd_cmask);
dp->pmd_cmask = cmask ? xstrdup(cmask) : NULL;
/* Restores the non-pmd. */
dp_netdev_set_nonpmd(dp);
/* Restores all pmd threads. */
dp_netdev_reset_pmd_threads(dp);
}
return 0;
}
static int
dpif_netdev_queue_to_priority(const struct dpif *dpif OVS_UNUSED,
uint32_t queue_id, uint32_t *priority)
{
*priority = queue_id;
return 0;
}
/* Creates and returns a new 'struct dp_netdev_actions', whose actions are
* a copy of the 'ofpacts_len' bytes of 'ofpacts'. */
struct dp_netdev_actions *
dp_netdev_actions_create(const struct nlattr *actions, size_t size)
{
struct dp_netdev_actions *netdev_actions;
netdev_actions = xmalloc(sizeof *netdev_actions + size);
memcpy(netdev_actions->actions, actions, size);
netdev_actions->size = size;
return netdev_actions;
}
struct dp_netdev_actions *
dp_netdev_flow_get_actions(const struct dp_netdev_flow *flow)
{
return ovsrcu_get(struct dp_netdev_actions *, &flow->actions);
}
static void
dp_netdev_actions_free(struct dp_netdev_actions *actions)
{
free(actions);
}
static inline unsigned long long
cycles_counter(void)
{
#ifdef DPDK_NETDEV
return rte_get_tsc_cycles();
#else
return 0;
#endif
}
/* Fake mutex to make sure that the calls to cycles_count_* are balanced */
extern struct ovs_mutex cycles_counter_fake_mutex;
/* Start counting cycles. Must be followed by 'cycles_count_end()' */
static inline void
cycles_count_start(struct dp_netdev_pmd_thread *pmd)
OVS_ACQUIRES(&cycles_counter_fake_mutex)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
pmd->last_cycles = cycles_counter();
}
/* Stop counting cycles and add them to the counter 'type' */
static inline void
cycles_count_end(struct dp_netdev_pmd_thread *pmd,
enum pmd_cycles_counter_type type)
OVS_RELEASES(&cycles_counter_fake_mutex)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
unsigned long long interval = cycles_counter() - pmd->last_cycles;
non_atomic_ullong_add(&pmd->cycles.n[type], interval);
}
static void
dp_netdev_process_rxq_port(struct dp_netdev_pmd_thread *pmd,
struct dp_netdev_port *port,
struct netdev_rxq *rxq)
{
struct dp_packet *packets[NETDEV_MAX_BURST];
int error, cnt;
cycles_count_start(pmd);
error = netdev_rxq_recv(rxq, packets, &cnt);
cycles_count_end(pmd, PMD_CYCLES_POLLING);
if (!error) {
*recirc_depth_get() = 0;
cycles_count_start(pmd);
dp_netdev_input(pmd, packets, cnt, port->port_no);
cycles_count_end(pmd, PMD_CYCLES_PROCESSING);
} else if (error != EAGAIN && error != EOPNOTSUPP) {
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
VLOG_ERR_RL(&rl, "error receiving data from %s: %s",
netdev_get_name(port->netdev), ovs_strerror(error));
}
}
/* Return true if needs to revalidate datapath flows. */
static bool
dpif_netdev_run(struct dpif *dpif)
{
struct dp_netdev_port *port;
struct dp_netdev *dp = get_dp_netdev(dpif);
struct dp_netdev_pmd_thread *non_pmd = dp_netdev_get_pmd(dp,
NON_PMD_CORE_ID);
uint64_t new_tnl_seq;
ovs_mutex_lock(&dp->non_pmd_mutex);
CMAP_FOR_EACH (port, node, &dp->ports) {
if (!netdev_is_pmd(port->netdev)) {
int i;
for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
dp_netdev_process_rxq_port(non_pmd, port, port->rxq[i]);
}
}
}
ovs_mutex_unlock(&dp->non_pmd_mutex);
dp_netdev_pmd_unref(non_pmd);
tnl_neigh_cache_run();
tnl_port_map_run();
new_tnl_seq = seq_read(tnl_conf_seq);
if (dp->last_tnl_conf_seq != new_tnl_seq) {
dp->last_tnl_conf_seq = new_tnl_seq;
return true;
}
return false;
}
static void
dpif_netdev_wait(struct dpif *dpif)
{
struct dp_netdev_port *port;
struct dp_netdev *dp = get_dp_netdev(dpif);
ovs_mutex_lock(&dp_netdev_mutex);
CMAP_FOR_EACH (port, node, &dp->ports) {
if (!netdev_is_pmd(port->netdev)) {
int i;
for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
netdev_rxq_wait(port->rxq[i]);
}
}
}
ovs_mutex_unlock(&dp_netdev_mutex);
seq_wait(tnl_conf_seq, dp->last_tnl_conf_seq);
}
static int
pmd_load_queues(struct dp_netdev_pmd_thread *pmd,
struct rxq_poll **ppoll_list, int poll_cnt)
OVS_REQUIRES(pmd->poll_mutex)
{
struct rxq_poll *poll_list = *ppoll_list;
struct rxq_poll *poll;
int i;
for (i = 0; i < poll_cnt; i++) {
port_unref(poll_list[i].port);
}
poll_list = xrealloc(poll_list, pmd->poll_cnt * sizeof *poll_list);
i = 0;
LIST_FOR_EACH (poll, node, &pmd->poll_list) {
port_ref(poll->port);
poll_list[i++] = *poll;
}
*ppoll_list = poll_list;
return pmd->poll_cnt;
}
static void *
pmd_thread_main(void *f_)
{
struct dp_netdev_pmd_thread *pmd = f_;
unsigned int lc = 0;
struct rxq_poll *poll_list;
unsigned int port_seq = PMD_INITIAL_SEQ;
int poll_cnt;
int i;
poll_cnt = 0;
poll_list = NULL;
/* Stores the pmd thread's 'pmd' to 'per_pmd_key'. */
ovsthread_setspecific(pmd->dp->per_pmd_key, pmd);
pmd_thread_setaffinity_cpu(pmd->core_id);
reload:
emc_cache_init(&pmd->flow_cache);
ovs_mutex_lock(&pmd->poll_mutex);
poll_cnt = pmd_load_queues(pmd, &poll_list, poll_cnt);
ovs_mutex_unlock(&pmd->poll_mutex);
/* List port/core affinity */
for (i = 0; i < poll_cnt; i++) {
VLOG_DBG("Core %d processing port \'%s\' with queue-id %d\n",
pmd->core_id, netdev_get_name(poll_list[i].port->netdev),
netdev_rxq_get_queue_id(poll_list[i].rx));
}
/* Signal here to make sure the pmd finishes
* reloading the updated configuration. */
dp_netdev_pmd_reload_done(pmd);
for (;;) {
for (i = 0; i < poll_cnt; i++) {
dp_netdev_process_rxq_port(pmd, poll_list[i].port, poll_list[i].rx);
}
if (lc++ > 1024) {
unsigned int seq;
lc = 0;
emc_cache_slow_sweep(&pmd->flow_cache);
coverage_try_clear();
ovsrcu_quiesce();
atomic_read_relaxed(&pmd->change_seq, &seq);
if (seq != port_seq) {
port_seq = seq;
break;
}
}
}
emc_cache_uninit(&pmd->flow_cache);
if (!latch_is_set(&pmd->exit_latch)){
goto reload;
}
for (i = 0; i < poll_cnt; i++) {
port_unref(poll_list[i].port);
}
dp_netdev_pmd_reload_done(pmd);
free(poll_list);
return NULL;
}
static void
dp_netdev_disable_upcall(struct dp_netdev *dp)
OVS_ACQUIRES(dp->upcall_rwlock)
{
fat_rwlock_wrlock(&dp->upcall_rwlock);
}
static void
dpif_netdev_disable_upcall(struct dpif *dpif)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
struct dp_netdev *dp = get_dp_netdev(dpif);
dp_netdev_disable_upcall(dp);
}
static void
dp_netdev_enable_upcall(struct dp_netdev *dp)
OVS_RELEASES(dp->upcall_rwlock)
{
fat_rwlock_unlock(&dp->upcall_rwlock);
}
static void
dpif_netdev_enable_upcall(struct dpif *dpif)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
struct dp_netdev *dp = get_dp_netdev(dpif);
dp_netdev_enable_upcall(dp);
}
static void
dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd)
{
ovs_mutex_lock(&pmd->cond_mutex);
xpthread_cond_signal(&pmd->cond);
ovs_mutex_unlock(&pmd->cond_mutex);
}
/* Finds and refs the dp_netdev_pmd_thread on core 'core_id'. Returns
* the pointer if succeeds, otherwise, NULL.
*
* Caller must unrefs the returned reference. */
static struct dp_netdev_pmd_thread *
dp_netdev_get_pmd(struct dp_netdev *dp, unsigned core_id)
{
struct dp_netdev_pmd_thread *pmd;
const struct cmap_node *pnode;
pnode = cmap_find(&dp->poll_threads, hash_int(core_id, 0));
if (!pnode) {
return NULL;
}
pmd = CONTAINER_OF(pnode, struct dp_netdev_pmd_thread, node);
return dp_netdev_pmd_try_ref(pmd) ? pmd : NULL;
}
/* Sets the 'struct dp_netdev_pmd_thread' for non-pmd threads. */
static void
dp_netdev_set_nonpmd(struct dp_netdev *dp)
{
struct dp_netdev_pmd_thread *non_pmd;
non_pmd = xzalloc(sizeof *non_pmd);
dp_netdev_configure_pmd(non_pmd, dp, 0, NON_PMD_CORE_ID,
OVS_NUMA_UNSPEC);
}
/* Caller must have valid pointer to 'pmd'. */
static bool
dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd)
{
return ovs_refcount_try_ref_rcu(&pmd->ref_cnt);
}
static void
dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd)
{
if (pmd && ovs_refcount_unref(&pmd->ref_cnt) == 1) {
ovsrcu_postpone(dp_netdev_destroy_pmd, pmd);
}
}
/* Given cmap position 'pos', tries to ref the next node. If try_ref()
* fails, keeps checking for next node until reaching the end of cmap.
*
* Caller must unrefs the returned reference. */
static struct dp_netdev_pmd_thread *
dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos)
{
struct dp_netdev_pmd_thread *next;
do {
struct cmap_node *node;
node = cmap_next_position(&dp->poll_threads, pos);
next = node ? CONTAINER_OF(node, struct dp_netdev_pmd_thread, node)
: NULL;
} while (next && !dp_netdev_pmd_try_ref(next));
return next;
}
/* Configures the 'pmd' based on the input argument. */
static void
dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd, struct dp_netdev *dp,
int index, unsigned core_id, int numa_id)
{
pmd->dp = dp;
pmd->index = index;
pmd->core_id = core_id;
pmd->numa_id = numa_id;
pmd->poll_cnt = 0;
atomic_init(&pmd->tx_qid,
(core_id == NON_PMD_CORE_ID)
? ovs_numa_get_n_cores()
: get_n_pmd_threads(dp));
ovs_refcount_init(&pmd->ref_cnt);
latch_init(&pmd->exit_latch);
atomic_init(&pmd->change_seq, PMD_INITIAL_SEQ);
xpthread_cond_init(&pmd->cond, NULL);
ovs_mutex_init(&pmd->cond_mutex);
ovs_mutex_init(&pmd->flow_mutex);
ovs_mutex_init(&pmd->poll_mutex);
dpcls_init(&pmd->cls);
cmap_init(&pmd->flow_table);
list_init(&pmd->poll_list);
/* init the 'flow_cache' since there is no
* actual thread created for NON_PMD_CORE_ID. */
if (core_id == NON_PMD_CORE_ID) {
emc_cache_init(&pmd->flow_cache);
}
cmap_insert(&dp->poll_threads, CONST_CAST(struct cmap_node *, &pmd->node),
hash_int(core_id, 0));
}
static void
dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd)
{
dp_netdev_pmd_flow_flush(pmd);
dpcls_destroy(&pmd->cls);
cmap_destroy(&pmd->flow_table);
ovs_mutex_destroy(&pmd->flow_mutex);
latch_destroy(&pmd->exit_latch);
xpthread_cond_destroy(&pmd->cond);
ovs_mutex_destroy(&pmd->cond_mutex);
ovs_mutex_destroy(&pmd->poll_mutex);
free(pmd);
}
/* Stops the pmd thread, removes it from the 'dp->poll_threads',
* and unrefs the struct. */
static void
dp_netdev_del_pmd(struct dp_netdev *dp, struct dp_netdev_pmd_thread *pmd)
{
struct rxq_poll *poll;
/* Uninit the 'flow_cache' since there is
* no actual thread uninit it for NON_PMD_CORE_ID. */
if (pmd->core_id == NON_PMD_CORE_ID) {
emc_cache_uninit(&pmd->flow_cache);
} else {
latch_set(&pmd->exit_latch);
dp_netdev_reload_pmd__(pmd);
ovs_numa_unpin_core(pmd->core_id);
xpthread_join(pmd->thread, NULL);
}
/* Unref all ports and free poll_list. */
LIST_FOR_EACH_POP (poll, node, &pmd->poll_list) {
port_unref(poll->port);
free(poll);
}
/* Purges the 'pmd''s flows after stopping the thread, but before
* destroying the flows, so that the flow stats can be collected. */
if (dp->dp_purge_cb) {
dp->dp_purge_cb(dp->dp_purge_aux, pmd->core_id);
}
cmap_remove(&pmd->dp->poll_threads, &pmd->node, hash_int(pmd->core_id, 0));
dp_netdev_pmd_unref(pmd);
}
/* Destroys all pmd threads. */
static void
dp_netdev_destroy_all_pmds(struct dp_netdev *dp)
{
struct dp_netdev_pmd_thread *pmd;
struct dp_netdev_pmd_thread **pmd_list;
size_t k = 0, n_pmds;
n_pmds = cmap_count(&dp->poll_threads);
pmd_list = xcalloc(n_pmds, sizeof *pmd_list);
CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
/* We cannot call dp_netdev_del_pmd(), since it alters
* 'dp->poll_threads' (while we're iterating it) and it
* might quiesce. */
ovs_assert(k < n_pmds);
pmd_list[k++] = pmd;
}
for (size_t i = 0; i < k; i++) {
dp_netdev_del_pmd(dp, pmd_list[i]);
}
free(pmd_list);
}
/* Deletes all pmd threads on numa node 'numa_id' and
* fixes tx_qids of other threads to keep them sequential. */
static void
dp_netdev_del_pmds_on_numa(struct dp_netdev *dp, int numa_id)
{
struct dp_netdev_pmd_thread *pmd;
int n_pmds_on_numa, n_pmds;
int *free_idx, k = 0;
struct dp_netdev_pmd_thread **pmd_list;
n_pmds_on_numa = get_n_pmd_threads_on_numa(dp, numa_id);
free_idx = xcalloc(n_pmds_on_numa, sizeof *free_idx);
pmd_list = xcalloc(n_pmds_on_numa, sizeof *pmd_list);
CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
/* We cannot call dp_netdev_del_pmd(), since it alters
* 'dp->poll_threads' (while we're iterating it) and it
* might quiesce. */
if (pmd->numa_id == numa_id) {
atomic_read_relaxed(&pmd->tx_qid, &free_idx[k]);
pmd_list[k] = pmd;
ovs_assert(k < n_pmds_on_numa);
k++;
}
}
for (int i = 0; i < k; i++) {
dp_netdev_del_pmd(dp, pmd_list[i]);
}
n_pmds = get_n_pmd_threads(dp);
CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
int old_tx_qid;
atomic_read_relaxed(&pmd->tx_qid, &old_tx_qid);
if (old_tx_qid >= n_pmds) {
int new_tx_qid = free_idx[--k];
atomic_store_relaxed(&pmd->tx_qid, new_tx_qid);
}
}
free(pmd_list);
free(free_idx);
}
/* Returns PMD thread from this numa node with fewer rx queues to poll.
* Returns NULL if there is no PMD threads on this numa node.
* Can be called safely only by main thread. */
static struct dp_netdev_pmd_thread *
dp_netdev_less_loaded_pmd_on_numa(struct dp_netdev *dp, int numa_id)
{
int min_cnt = -1;
struct dp_netdev_pmd_thread *pmd, *res = NULL;
CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
if (pmd->numa_id == numa_id
&& (min_cnt > pmd->poll_cnt || res == NULL)) {
min_cnt = pmd->poll_cnt;
res = pmd;
}
}
return res;
}
/* Adds rx queue to poll_list of PMD thread. */
static void
dp_netdev_add_rxq_to_pmd(struct dp_netdev_pmd_thread *pmd,
struct dp_netdev_port *port, struct netdev_rxq *rx)
OVS_REQUIRES(pmd->poll_mutex)
{
struct rxq_poll *poll = xmalloc(sizeof *poll);
port_ref(port);
poll->port = port;
poll->rx = rx;
list_push_back(&pmd->poll_list, &poll->node);
pmd->poll_cnt++;
}
/* Checks the numa node id of 'netdev' and starts pmd threads for
* the numa node. */
static void
dp_netdev_set_pmds_on_numa(struct dp_netdev *dp, int numa_id)
{
int n_pmds;
if (!ovs_numa_numa_id_is_valid(numa_id)) {
VLOG_ERR("Cannot create pmd threads due to numa id (%d)"
"invalid", numa_id);
return ;
}
n_pmds = get_n_pmd_threads_on_numa(dp, numa_id);
/* If there are already pmd threads created for the numa node
* in which 'netdev' is on, do nothing. Else, creates the
* pmd threads for the numa node. */
if (!n_pmds) {
int can_have, n_unpinned, i, index = 0;
struct dp_netdev_pmd_thread **pmds;
struct dp_netdev_port *port;
n_unpinned = ovs_numa_get_n_unpinned_cores_on_numa(numa_id);
if (!n_unpinned) {
VLOG_ERR("Cannot create pmd threads due to out of unpinned "
"cores on numa node");
return;
}
/* If cpu mask is specified, uses all unpinned cores, otherwise
* tries creating NR_PMD_THREADS pmd threads. */
can_have = dp->pmd_cmask ? n_unpinned : MIN(n_unpinned, NR_PMD_THREADS);
pmds = xzalloc(can_have * sizeof *pmds);
for (i = 0; i < can_have; i++) {
unsigned core_id = ovs_numa_get_unpinned_core_on_numa(numa_id);
pmds[i] = xzalloc(sizeof **pmds);
dp_netdev_configure_pmd(pmds[i], dp, i, core_id, numa_id);
}
/* Distributes rx queues of this numa node between new pmd threads. */
CMAP_FOR_EACH (port, node, &dp->ports) {
if (netdev_is_pmd(port->netdev)
&& netdev_get_numa_id(port->netdev) == numa_id) {
for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
/* Make thread-safety analyser happy. */
ovs_mutex_lock(&pmds[index]->poll_mutex);
dp_netdev_add_rxq_to_pmd(pmds[index], port, port->rxq[i]);
ovs_mutex_unlock(&pmds[index]->poll_mutex);
index = (index + 1) % can_have;
}
}
}
/* Actual start of pmd threads. */
for (i = 0; i < can_have; i++) {
pmds[i]->thread = ovs_thread_create("pmd", pmd_thread_main, pmds[i]);
}
free(pmds);
VLOG_INFO("Created %d pmd threads on numa node %d", can_have, numa_id);
}
}
/* Called after pmd threads config change. Restarts pmd threads with
* new configuration. */
static void
dp_netdev_reset_pmd_threads(struct dp_netdev *dp)
{
struct dp_netdev_port *port;
CMAP_FOR_EACH (port, node, &dp->ports) {
if (netdev_is_pmd(port->netdev)) {
int numa_id = netdev_get_numa_id(port->netdev);
dp_netdev_set_pmds_on_numa(dp, numa_id);
}
}
}
static char *
dpif_netdev_get_datapath_version(void)
{
return xstrdup("<built-in>");
}
static void
dp_netdev_flow_used(struct dp_netdev_flow *netdev_flow, int cnt, int size,
uint16_t tcp_flags, long long now)
{
uint16_t flags;
atomic_store_relaxed(&netdev_flow->stats.used, now);
non_atomic_ullong_add(&netdev_flow->stats.packet_count, cnt);
non_atomic_ullong_add(&netdev_flow->stats.byte_count, size);
atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
flags |= tcp_flags;
atomic_store_relaxed(&netdev_flow->stats.tcp_flags, flags);
}
static void
dp_netdev_count_packet(struct dp_netdev_pmd_thread *pmd,
enum dp_stat_type type, int cnt)
{
non_atomic_ullong_add(&pmd->stats.n[type], cnt);
}
static int
dp_netdev_upcall(struct dp_netdev_pmd_thread *pmd, struct dp_packet *packet_,
struct flow *flow, struct flow_wildcards *wc, ovs_u128 *ufid,
enum dpif_upcall_type type, const struct nlattr *userdata,
struct ofpbuf *actions, struct ofpbuf *put_actions)
{
struct dp_netdev *dp = pmd->dp;
dpif-netdev: Translate Geneve options per-flow, not per-packet. The kernel implementation of Geneve options stores the TLV option data in the flow exactly as received, without any further parsing. This is then translated to known options for the purposes of matching on flow setup (which will then install a datapath flow in the form the kernel is expecting). The userspace implementation behaves a little bit differently - it looks up known options as each packet is received. The reason for this is there is a much tighter coupling between datapath and flow translation and the representation is generally expected to be the same. This works but it incurs work on a per-packet basis that could be done per-flow instead. This introduces a small translation step for Geneve packets between datapath and flow lookup for the userspace datapath in order to allow the same kind of processing that the kernel does. A side effect of this is that unknown options are now shown when flows dumped via ovs-appctl dpif/dump-flows, similar to the kernel. There is a second benefit to this as well: for some operations it is preferable to keep the options exactly as they were received on the wire, which this enables. One example is that for packets that are executed from ofproto-dpif-upcall to the datapath, this avoids the translation of Geneve metadata. Since this conversion is potentially lossy (for unknown options), keeping everything in the same format removes the possibility of dropping options if the packet comes back up to userspace and the Geneve option translation table has changed. To help with these types of operations, most functions can understand both formats of data and seamlessly do the right thing. Signed-off-by: Jesse Gross <jesse@nicira.com> Acked-by: Jarno Rajahalme <jrajahalme@nicira.com>
2015-06-29 18:01:59 -07:00
struct flow_tnl orig_tunnel;
int err;
if (OVS_UNLIKELY(!dp->upcall_cb)) {
return ENODEV;
}
dpif-netdev: Translate Geneve options per-flow, not per-packet. The kernel implementation of Geneve options stores the TLV option data in the flow exactly as received, without any further parsing. This is then translated to known options for the purposes of matching on flow setup (which will then install a datapath flow in the form the kernel is expecting). The userspace implementation behaves a little bit differently - it looks up known options as each packet is received. The reason for this is there is a much tighter coupling between datapath and flow translation and the representation is generally expected to be the same. This works but it incurs work on a per-packet basis that could be done per-flow instead. This introduces a small translation step for Geneve packets between datapath and flow lookup for the userspace datapath in order to allow the same kind of processing that the kernel does. A side effect of this is that unknown options are now shown when flows dumped via ovs-appctl dpif/dump-flows, similar to the kernel. There is a second benefit to this as well: for some operations it is preferable to keep the options exactly as they were received on the wire, which this enables. One example is that for packets that are executed from ofproto-dpif-upcall to the datapath, this avoids the translation of Geneve metadata. Since this conversion is potentially lossy (for unknown options), keeping everything in the same format removes the possibility of dropping options if the packet comes back up to userspace and the Geneve option translation table has changed. To help with these types of operations, most functions can understand both formats of data and seamlessly do the right thing. Signed-off-by: Jesse Gross <jesse@nicira.com> Acked-by: Jarno Rajahalme <jrajahalme@nicira.com>
2015-06-29 18:01:59 -07:00
/* Upcall processing expects the Geneve options to be in the translated
* format but we need to retain the raw format for datapath use. */
orig_tunnel.flags = flow->tunnel.flags;
if (flow->tunnel.flags & FLOW_TNL_F_UDPIF) {
orig_tunnel.metadata.present.len = flow->tunnel.metadata.present.len;
memcpy(orig_tunnel.metadata.opts.gnv, flow->tunnel.metadata.opts.gnv,
flow->tunnel.metadata.present.len);
err = tun_metadata_from_geneve_udpif(&orig_tunnel, &orig_tunnel,
&flow->tunnel);
if (err) {
return err;
}
}
if (OVS_UNLIKELY(!VLOG_DROP_DBG(&upcall_rl))) {
struct ds ds = DS_EMPTY_INITIALIZER;
char *packet_str;
struct ofpbuf key;
struct odp_flow_key_parms odp_parms = {
.flow = flow,
.mask = &wc->masks,
.odp_in_port = flow->in_port.odp_port,
.support = dp_netdev_support,
};
ofpbuf_init(&key, 0);
odp_flow_key_from_flow(&odp_parms, &key);
packet_str = ofp_packet_to_string(dp_packet_data(packet_),
dp_packet_size(packet_));
odp_flow_key_format(key.data, key.size, &ds);
VLOG_DBG("%s: %s upcall:\n%s\n%s", dp->name,
dpif_upcall_type_to_string(type), ds_cstr(&ds), packet_str);
ofpbuf_uninit(&key);
free(packet_str);
ds_destroy(&ds);
}
dpif-netdev: Translate Geneve options per-flow, not per-packet. The kernel implementation of Geneve options stores the TLV option data in the flow exactly as received, without any further parsing. This is then translated to known options for the purposes of matching on flow setup (which will then install a datapath flow in the form the kernel is expecting). The userspace implementation behaves a little bit differently - it looks up known options as each packet is received. The reason for this is there is a much tighter coupling between datapath and flow translation and the representation is generally expected to be the same. This works but it incurs work on a per-packet basis that could be done per-flow instead. This introduces a small translation step for Geneve packets between datapath and flow lookup for the userspace datapath in order to allow the same kind of processing that the kernel does. A side effect of this is that unknown options are now shown when flows dumped via ovs-appctl dpif/dump-flows, similar to the kernel. There is a second benefit to this as well: for some operations it is preferable to keep the options exactly as they were received on the wire, which this enables. One example is that for packets that are executed from ofproto-dpif-upcall to the datapath, this avoids the translation of Geneve metadata. Since this conversion is potentially lossy (for unknown options), keeping everything in the same format removes the possibility of dropping options if the packet comes back up to userspace and the Geneve option translation table has changed. To help with these types of operations, most functions can understand both formats of data and seamlessly do the right thing. Signed-off-by: Jesse Gross <jesse@nicira.com> Acked-by: Jarno Rajahalme <jrajahalme@nicira.com>
2015-06-29 18:01:59 -07:00
err = dp->upcall_cb(packet_, flow, ufid, pmd->core_id, type, userdata,
actions, wc, put_actions, dp->upcall_aux);
if (err && err != ENOSPC) {
return err;
}
/* Translate tunnel metadata masks to datapath format. */
if (wc) {
if (wc->masks.tunnel.metadata.present.map) {
struct geneve_opt opts[TLV_TOT_OPT_SIZE /
dpif-netdev: Translate Geneve options per-flow, not per-packet. The kernel implementation of Geneve options stores the TLV option data in the flow exactly as received, without any further parsing. This is then translated to known options for the purposes of matching on flow setup (which will then install a datapath flow in the form the kernel is expecting). The userspace implementation behaves a little bit differently - it looks up known options as each packet is received. The reason for this is there is a much tighter coupling between datapath and flow translation and the representation is generally expected to be the same. This works but it incurs work on a per-packet basis that could be done per-flow instead. This introduces a small translation step for Geneve packets between datapath and flow lookup for the userspace datapath in order to allow the same kind of processing that the kernel does. A side effect of this is that unknown options are now shown when flows dumped via ovs-appctl dpif/dump-flows, similar to the kernel. There is a second benefit to this as well: for some operations it is preferable to keep the options exactly as they were received on the wire, which this enables. One example is that for packets that are executed from ofproto-dpif-upcall to the datapath, this avoids the translation of Geneve metadata. Since this conversion is potentially lossy (for unknown options), keeping everything in the same format removes the possibility of dropping options if the packet comes back up to userspace and the Geneve option translation table has changed. To help with these types of operations, most functions can understand both formats of data and seamlessly do the right thing. Signed-off-by: Jesse Gross <jesse@nicira.com> Acked-by: Jarno Rajahalme <jrajahalme@nicira.com>
2015-06-29 18:01:59 -07:00
sizeof(struct geneve_opt)];
if (orig_tunnel.flags & FLOW_TNL_F_UDPIF) {
tun_metadata_to_geneve_udpif_mask(&flow->tunnel,
&wc->masks.tunnel,
orig_tunnel.metadata.opts.gnv,
orig_tunnel.metadata.present.len,
opts);
} else {
orig_tunnel.metadata.present.len = 0;
}
dpif-netdev: Translate Geneve options per-flow, not per-packet. The kernel implementation of Geneve options stores the TLV option data in the flow exactly as received, without any further parsing. This is then translated to known options for the purposes of matching on flow setup (which will then install a datapath flow in the form the kernel is expecting). The userspace implementation behaves a little bit differently - it looks up known options as each packet is received. The reason for this is there is a much tighter coupling between datapath and flow translation and the representation is generally expected to be the same. This works but it incurs work on a per-packet basis that could be done per-flow instead. This introduces a small translation step for Geneve packets between datapath and flow lookup for the userspace datapath in order to allow the same kind of processing that the kernel does. A side effect of this is that unknown options are now shown when flows dumped via ovs-appctl dpif/dump-flows, similar to the kernel. There is a second benefit to this as well: for some operations it is preferable to keep the options exactly as they were received on the wire, which this enables. One example is that for packets that are executed from ofproto-dpif-upcall to the datapath, this avoids the translation of Geneve metadata. Since this conversion is potentially lossy (for unknown options), keeping everything in the same format removes the possibility of dropping options if the packet comes back up to userspace and the Geneve option translation table has changed. To help with these types of operations, most functions can understand both formats of data and seamlessly do the right thing. Signed-off-by: Jesse Gross <jesse@nicira.com> Acked-by: Jarno Rajahalme <jrajahalme@nicira.com>
2015-06-29 18:01:59 -07:00
memset(&wc->masks.tunnel.metadata, 0,
sizeof wc->masks.tunnel.metadata);
memcpy(&wc->masks.tunnel.metadata.opts.gnv, opts,
orig_tunnel.metadata.present.len);
}
wc->masks.tunnel.metadata.present.len = 0xff;
}
/* Restore tunnel metadata. We need to use the saved options to ensure
* that any unknown options are not lost. The generated mask will have
* the same structure, matching on types and lengths but wildcarding
* option data we don't care about. */
if (orig_tunnel.flags & FLOW_TNL_F_UDPIF) {
memcpy(&flow->tunnel.metadata.opts.gnv, orig_tunnel.metadata.opts.gnv,
orig_tunnel.metadata.present.len);
flow->tunnel.metadata.present.len = orig_tunnel.metadata.present.len;
flow->tunnel.flags |= FLOW_TNL_F_UDPIF;
}
return err;
}
static inline uint32_t
dpif_netdev_packet_get_rss_hash(struct dp_packet *packet,
const struct miniflow *mf)
{
uint32_t hash, recirc_depth;
if (OVS_LIKELY(dp_packet_rss_valid(packet))) {
hash = dp_packet_get_rss_hash(packet);
} else {
hash = miniflow_hash_5tuple(mf, 0);
dp_packet_set_rss_hash(packet, hash);
}
/* The RSS hash must account for the recirculation depth to avoid
* collisions in the exact match cache */
recirc_depth = *recirc_depth_get_unsafe();
if (OVS_UNLIKELY(recirc_depth)) {
hash = hash_finish(hash, recirc_depth);
dp_packet_set_rss_hash(packet, hash);
}
return hash;
}
struct packet_batch {
unsigned int packet_count;
unsigned int byte_count;
uint16_t tcp_flags;
struct dp_netdev_flow *flow;
struct dp_packet *packets[NETDEV_MAX_BURST];
};
static inline void
packet_batch_update(struct packet_batch *batch, struct dp_packet *packet,
const struct miniflow *mf)
{
batch->tcp_flags |= miniflow_get_tcp_flags(mf);
batch->packets[batch->packet_count++] = packet;
batch->byte_count += dp_packet_size(packet);
}
static inline void
packet_batch_init(struct packet_batch *batch, struct dp_netdev_flow *flow)
{
flow->batch = batch;
batch->flow = flow;
batch->packet_count = 0;
batch->byte_count = 0;
batch->tcp_flags = 0;
}
static inline void
packet_batch_execute(struct packet_batch *batch,
struct dp_netdev_pmd_thread *pmd,
long long now)
{
struct dp_netdev_actions *actions;
struct dp_netdev_flow *flow = batch->flow;
dp_netdev_flow_used(flow, batch->packet_count, batch->byte_count,
batch->tcp_flags, now);
actions = dp_netdev_flow_get_actions(flow);
dp_netdev_execute_actions(pmd, batch->packets, batch->packet_count, true,
actions->actions, actions->size);
}
static inline void
dp_netdev_queue_batches(struct dp_packet *pkt,
struct dp_netdev_flow *flow, const struct miniflow *mf,
struct packet_batch *batches, size_t *n_batches)
{
struct packet_batch *batch = flow->batch;
if (OVS_UNLIKELY(!batch)) {
batch = &batches[(*n_batches)++];
packet_batch_init(batch, flow);
}
packet_batch_update(batch, pkt, mf);
}
/* Try to process all ('cnt') the 'packets' using only the exact match cache
* 'pmd->flow_cache'. If a flow is not found for a packet 'packets[i]', the
* miniflow is copied into 'keys' and the packet pointer is moved at the
* beginning of the 'packets' array.
*
* The function returns the number of packets that needs to be processed in the
* 'packets' array (they have been moved to the beginning of the vector).
*
* If 'md_is_valid' is false, the metadata in 'packets' is not valid and must be
* initialized by this function using 'port_no'.
*/
static inline size_t
emc_processing(struct dp_netdev_pmd_thread *pmd, struct dp_packet **packets,
size_t cnt, struct netdev_flow_key *keys,
struct packet_batch batches[], size_t *n_batches,
bool md_is_valid, odp_port_t port_no)
{
struct emc_cache *flow_cache = &pmd->flow_cache;
struct netdev_flow_key *key = &keys[0];
size_t i, n_missed = 0, n_dropped = 0;
for (i = 0; i < cnt; i++) {
struct dp_netdev_flow *flow;
struct dp_packet *packet = packets[i];
if (OVS_UNLIKELY(dp_packet_size(packet) < ETH_HEADER_LEN)) {
dp_packet_delete(packet);
n_dropped++;
continue;
}
if (i != cnt - 1) {
/* Prefetch next packet data and metadata. */
OVS_PREFETCH(dp_packet_data(packets[i+1]));
pkt_metadata_prefetch_init(&packets[i+1]->md);
}
if (!md_is_valid) {
pkt_metadata_init(&packet->md, port_no);
}
miniflow_extract(packet, &key->mf);
key->len = 0; /* Not computed yet. */
key->hash = dpif_netdev_packet_get_rss_hash(packet, &key->mf);
flow = emc_lookup(flow_cache, key);
if (OVS_LIKELY(flow)) {
dp_netdev_queue_batches(packet, flow, &key->mf, batches,
n_batches);
} else {
/* Exact match cache missed. Group missed packets together at
* the beginning of the 'packets' array. */
packets[n_missed] = packet;
/* 'key[n_missed]' contains the key of the current packet and it
* must be returned to the caller. The next key should be extracted
* to 'keys[n_missed + 1]'. */
key = &keys[++n_missed];
}
}
dp_netdev_count_packet(pmd, DP_STAT_EXACT_HIT, cnt - n_dropped - n_missed);
return n_missed;
}
static inline void
fast_path_processing(struct dp_netdev_pmd_thread *pmd,
struct dp_packet **packets, size_t cnt,
struct netdev_flow_key *keys,
struct packet_batch batches[], size_t *n_batches)
{
#if !defined(__CHECKER__) && !defined(_WIN32)
const size_t PKT_ARRAY_SIZE = cnt;
#else
/* Sparse or MSVC doesn't like variable length array. */
enum { PKT_ARRAY_SIZE = NETDEV_MAX_BURST };
#endif
struct dpcls_rule *rules[PKT_ARRAY_SIZE];
struct dp_netdev *dp = pmd->dp;
struct emc_cache *flow_cache = &pmd->flow_cache;
int miss_cnt = 0, lost_cnt = 0;
bool any_miss;
size_t i;
for (i = 0; i < cnt; i++) {
/* Key length is needed in all the cases, hash computed on demand. */
keys[i].len = netdev_flow_key_size(miniflow_n_values(&keys[i].mf));
}
any_miss = !dpcls_lookup(&pmd->cls, keys, rules, cnt);
if (OVS_UNLIKELY(any_miss) && !fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
uint64_t actions_stub[512 / 8], slow_stub[512 / 8];
struct ofpbuf actions, put_actions;
ovs_u128 ufid;
ofpbuf_use_stub(&actions, actions_stub, sizeof actions_stub);
ofpbuf_use_stub(&put_actions, slow_stub, sizeof slow_stub);
for (i = 0; i < cnt; i++) {
struct dp_netdev_flow *netdev_flow;
struct ofpbuf *add_actions;
struct match match;
int error;
if (OVS_LIKELY(rules[i])) {
continue;
}
/* It's possible that an earlier slow path execution installed
* a rule covering this flow. In this case, it's a lot cheaper
* to catch it here than execute a miss. */
netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &keys[i]);
if (netdev_flow) {
rules[i] = &netdev_flow->cr;
continue;
}
miss_cnt++;
match.tun_md.valid = false;
miniflow_expand(&keys[i].mf, &match.flow);
ofpbuf_clear(&actions);
ofpbuf_clear(&put_actions);
dpif_flow_hash(dp->dpif, &match.flow, sizeof match.flow, &ufid);
error = dp_netdev_upcall(pmd, packets[i], &match.flow, &match.wc,
&ufid, DPIF_UC_MISS, NULL, &actions,
&put_actions);
if (OVS_UNLIKELY(error && error != ENOSPC)) {
dp_packet_delete(packets[i]);
lost_cnt++;
continue;
}
/* The Netlink encoding of datapath flow keys cannot express
* wildcarding the presence of a VLAN tag. Instead, a missing VLAN
* tag is interpreted as exact match on the fact that there is no
* VLAN. Unless we refactor a lot of code that translates between
* Netlink and struct flow representations, we have to do the same
* here. */
if (!match.wc.masks.vlan_tci) {
match.wc.masks.vlan_tci = htons(0xffff);
}
/* We can't allow the packet batching in the next loop to execute
* the actions. Otherwise, if there are any slow path actions,
* we'll send the packet up twice. */
dp_netdev_execute_actions(pmd, &packets[i], 1, true,
actions.data, actions.size);
add_actions = put_actions.size ? &put_actions : &actions;
if (OVS_LIKELY(error != ENOSPC)) {
/* XXX: There's a race window where a flow covering this packet
* could have already been installed since we last did the flow
* lookup before upcall. This could be solved by moving the
* mutex lock outside the loop, but that's an awful long time
* to be locking everyone out of making flow installs. If we
* move to a per-core classifier, it would be reasonable. */
ovs_mutex_lock(&pmd->flow_mutex);
netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &keys[i]);
if (OVS_LIKELY(!netdev_flow)) {
netdev_flow = dp_netdev_flow_add(pmd, &match, &ufid,
add_actions->data,
add_actions->size);
}
ovs_mutex_unlock(&pmd->flow_mutex);
emc_insert(flow_cache, &keys[i], netdev_flow);
}
}
ofpbuf_uninit(&actions);
ofpbuf_uninit(&put_actions);
fat_rwlock_unlock(&dp->upcall_rwlock);
dp_netdev_count_packet(pmd, DP_STAT_LOST, lost_cnt);
} else if (OVS_UNLIKELY(any_miss)) {
for (i = 0; i < cnt; i++) {
if (OVS_UNLIKELY(!rules[i])) {
dp_packet_delete(packets[i]);
lost_cnt++;
miss_cnt++;
}
}
}
for (i = 0; i < cnt; i++) {
struct dp_packet *packet = packets[i];
struct dp_netdev_flow *flow;
if (OVS_UNLIKELY(!rules[i])) {
continue;
}
flow = dp_netdev_flow_cast(rules[i]);
emc_insert(flow_cache, &keys[i], flow);
dp_netdev_queue_batches(packet, flow, &keys[i].mf, batches, n_batches);
}
dp_netdev_count_packet(pmd, DP_STAT_MASKED_HIT, cnt - miss_cnt);
dp_netdev_count_packet(pmd, DP_STAT_MISS, miss_cnt);
dp_netdev_count_packet(pmd, DP_STAT_LOST, lost_cnt);
}
/* Packets enter the datapath from a port (or from recirculation) here.
*
* For performance reasons a caller may choose not to initialize the metadata
* in 'packets': in this case 'mdinit' is false and this function needs to
* initialize it using 'port_no'. If the metadata in 'packets' is already
* valid, 'md_is_valid' must be true and 'port_no' will be ignored. */
static void
dp_netdev_input__(struct dp_netdev_pmd_thread *pmd,
struct dp_packet **packets, int cnt,
bool md_is_valid, odp_port_t port_no)
{
#if !defined(__CHECKER__) && !defined(_WIN32)
const size_t PKT_ARRAY_SIZE = cnt;
#else
/* Sparse or MSVC doesn't like variable length array. */
enum { PKT_ARRAY_SIZE = NETDEV_MAX_BURST };
#endif
struct netdev_flow_key keys[PKT_ARRAY_SIZE];
struct packet_batch batches[PKT_ARRAY_SIZE];
long long now = time_msec();
size_t newcnt, n_batches, i;
n_batches = 0;
newcnt = emc_processing(pmd, packets, cnt, keys, batches, &n_batches,
md_is_valid, port_no);
if (OVS_UNLIKELY(newcnt)) {
fast_path_processing(pmd, packets, newcnt, keys, batches, &n_batches);
}
for (i = 0; i < n_batches; i++) {
batches[i].flow->batch = NULL;
}
for (i = 0; i < n_batches; i++) {
packet_batch_execute(&batches[i], pmd, now);
}
}
static void
dp_netdev_input(struct dp_netdev_pmd_thread *pmd,
struct dp_packet **packets, int cnt,
odp_port_t port_no)
{
dp_netdev_input__(pmd, packets, cnt, false, port_no);
}
static void
dp_netdev_recirculate(struct dp_netdev_pmd_thread *pmd,
struct dp_packet **packets, int cnt)
{
dp_netdev_input__(pmd, packets, cnt, true, 0);
}
struct dp_netdev_execute_aux {
struct dp_netdev_pmd_thread *pmd;
};
static void
dpif_netdev_register_dp_purge_cb(struct dpif *dpif, dp_purge_callback *cb,
void *aux)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
dp->dp_purge_aux = aux;
dp->dp_purge_cb = cb;
}
static void
dpif_netdev_register_upcall_cb(struct dpif *dpif, upcall_callback *cb,
void *aux)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
dp->upcall_aux = aux;
dp->upcall_cb = cb;
}
static void
dp_netdev_drop_packets(struct dp_packet **packets, int cnt, bool may_steal)
{
if (may_steal) {
int i;
for (i = 0; i < cnt; i++) {
dp_packet_delete(packets[i]);
}
}
}
static int
push_tnl_action(const struct dp_netdev *dp,
const struct nlattr *attr,
struct dp_packet **packets, int cnt)
{
struct dp_netdev_port *tun_port;
const struct ovs_action_push_tnl *data;
data = nl_attr_get(attr);
tun_port = dp_netdev_lookup_port(dp, u32_to_odp(data->tnl_port));
if (!tun_port) {
return -EINVAL;
}
netdev_push_header(tun_port->netdev, packets, cnt, data);
return 0;
}
static void
dp_netdev_clone_pkt_batch(struct dp_packet **dst_pkts,
struct dp_packet **src_pkts, int cnt)
{
int i;
for (i = 0; i < cnt; i++) {
dst_pkts[i] = dp_packet_clone(src_pkts[i]);
}
}
static void
dp_execute_cb(void *aux_, struct dp_packet **packets, int cnt,
const struct nlattr *a, bool may_steal)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
struct dp_netdev_execute_aux *aux = aux_;
uint32_t *depth = recirc_depth_get();
struct dp_netdev_pmd_thread *pmd = aux->pmd;
struct dp_netdev *dp = pmd->dp;
int type = nl_attr_type(a);
struct dp_netdev_port *p;
int i;
switch ((enum ovs_action_attr)type) {
case OVS_ACTION_ATTR_OUTPUT:
p = dp_netdev_lookup_port(dp, u32_to_odp(nl_attr_get_u32(a)));
if (OVS_LIKELY(p)) {
int tx_qid;
atomic_read_relaxed(&pmd->tx_qid, &tx_qid);
netdev_send(p->netdev, tx_qid, packets, cnt, may_steal);
return;
}
break;
case OVS_ACTION_ATTR_TUNNEL_PUSH:
if (*depth < MAX_RECIRC_DEPTH) {
struct dp_packet *tnl_pkt[NETDEV_MAX_BURST];
int err;
if (!may_steal) {
dp_netdev_clone_pkt_batch(tnl_pkt, packets, cnt);
packets = tnl_pkt;
}
err = push_tnl_action(dp, a, packets, cnt);
if (!err) {
(*depth)++;
dp_netdev_recirculate(pmd, packets, cnt);
(*depth)--;
} else {
dp_netdev_drop_packets(tnl_pkt, cnt, !may_steal);
}
return;
}
break;
case OVS_ACTION_ATTR_TUNNEL_POP:
if (*depth < MAX_RECIRC_DEPTH) {
odp_port_t portno = u32_to_odp(nl_attr_get_u32(a));
p = dp_netdev_lookup_port(dp, portno);
if (p) {
struct dp_packet *tnl_pkt[NETDEV_MAX_BURST];
int err;
if (!may_steal) {
dp_netdev_clone_pkt_batch(tnl_pkt, packets, cnt);
packets = tnl_pkt;
}
err = netdev_pop_header(p->netdev, packets, cnt);
if (!err) {
for (i = 0; i < cnt; i++) {
packets[i]->md.in_port.odp_port = portno;
}
(*depth)++;
dp_netdev_recirculate(pmd, packets, cnt);
(*depth)--;
} else {
dp_netdev_drop_packets(tnl_pkt, cnt, !may_steal);
}
return;
}
}
break;
case OVS_ACTION_ATTR_USERSPACE:
if (!fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
const struct nlattr *userdata;
struct ofpbuf actions;
struct flow flow;
ovs_u128 ufid;
userdata = nl_attr_find_nested(a, OVS_USERSPACE_ATTR_USERDATA);
ofpbuf_init(&actions, 0);
for (i = 0; i < cnt; i++) {
int error;
ofpbuf_clear(&actions);
flow_extract(packets[i], &flow);
dpif_flow_hash(dp->dpif, &flow, sizeof flow, &ufid);
error = dp_netdev_upcall(pmd, packets[i], &flow, NULL, &ufid,
DPIF_UC_ACTION, userdata,&actions,
NULL);
if (!error || error == ENOSPC) {
dp_netdev_execute_actions(pmd, &packets[i], 1, may_steal,
actions.data, actions.size);
} else if (may_steal) {
dp_packet_delete(packets[i]);
}
netdev-dpdk: Fix race condition with DPDK mempools in non pmd threads DPDK mempools rely on rte_lcore_id() to implement a thread-local cache. Our non pmd threads had rte_lcore_id() == 0. This allowed concurrent access to the "thread-local" cache, causing crashes. This commit resolves the issue with the following changes: - Every non pmd thread has the same lcore_id (0, for management reasons), which is not shared with any pmd thread (lcore_id for pmd threads now start from 1) - DPDK mbufs must be allocated/freed in pmd threads. When there is the need to use mempools in non pmd threads, like in dpdk_do_tx_copy(), a mutex must be held. - The previous change does not allow us anymore to pass DPDK mbufs to handler threads: therefore this commit partially revert 143859ec63d45e. Now packets are copied for upcall processing. We can remove the extra memcpy by processing upcalls in the pmd thread itself. With the introduction of the extra locking, the packet throughput will be lower in the following cases: - When using internal (tap) devices with DPDK devices on the same datapath. Anyway, to support internal devices efficiently, we needed DPDK KNI devices, which will be proper pmd devices and will not need this locking. - When packets are processed in the slow path by non pmd threads. This overhead can be avoided by handling the upcalls directly in pmd threads (a change that has already been proposed by Ryan Wilson) Also, the following two fixes have been introduced: - In dpdk_free_buf() use rte_pktmbuf_free_seg() instead of rte_mempool_put(). This allows OVS to run properly with CONFIG_RTE_LIBRTE_MBUF_DEBUG DPDK option - Do not bulk free mbufs in a transmission queue. They may belong to different mempools Signed-off-by: Daniele Di Proietto <ddiproietto@vmware.com> Acked-by: Pravin B Shelar <pshelar@nicira.com>
2014-07-17 14:29:36 -07:00
}
ofpbuf_uninit(&actions);
fat_rwlock_unlock(&dp->upcall_rwlock);
return;
}
break;
case OVS_ACTION_ATTR_RECIRC:
if (*depth < MAX_RECIRC_DEPTH) {
struct dp_packet *recirc_pkts[NETDEV_MAX_BURST];
if (!may_steal) {
dp_netdev_clone_pkt_batch(recirc_pkts, packets, cnt);
packets = recirc_pkts;
}
for (i = 0; i < cnt; i++) {
packets[i]->md.recirc_id = nl_attr_get_u32(a);
}
(*depth)++;
dp_netdev_recirculate(pmd, packets, cnt);
(*depth)--;
return;
}
VLOG_WARN("Packet dropped. Max recirculation depth exceeded.");
break;
Add support for connection tracking. This patch adds a new action and fields to OVS that allow connection tracking to be performed. This support works in conjunction with the Linux kernel support merged into the Linux-4.3 development cycle. Packets have two possible states with respect to connection tracking: Untracked packets have not previously passed through the connection tracker, while tracked packets have previously been through the connection tracker. For OpenFlow pipeline processing, untracked packets can become tracked, and they will remain tracked until the end of the pipeline. Tracked packets cannot become untracked. Connections can be unknown, uncommitted, or committed. Packets which are untracked have unknown connection state. To know the connection state, the packet must become tracked. Uncommitted connections have no connection state stored about them, so it is only possible for the connection tracker to identify whether they are a new connection or whether they are invalid. Committed connections have connection state stored beyond the lifetime of the packet, which allows later packets in the same connection to be identified as part of the same established connection, or related to an existing connection - for instance ICMP error responses. The new 'ct' action transitions the packet from "untracked" to "tracked" by sending this flow through the connection tracker. The following parameters are supported initally: - "commit": When commit is executed, the connection moves from uncommitted state to committed state. This signals that information about the connection should be stored beyond the lifetime of the packet within the pipeline. This allows future packets in the same connection to be recognized as part of the same "established" (est) connection, as well as identifying packets in the reply (rpl) direction, or packets related to an existing connection (rel). - "zone=[u16|NXM]": Perform connection tracking in the zone specified. Each zone is an independent connection tracking context. When the "commit" parameter is used, the connection will only be committed in the specified zone, and not in other zones. This is 0 by default. - "table=NUMBER": Fork pipeline processing in two. The original instance of the packet will continue processing the current actions list as an untracked packet. An additional instance of the packet will be sent to the connection tracker, which will be re-injected into the OpenFlow pipeline to resume processing in the specified table, with the ct_state and other ct match fields set. If the table is not specified, then the packet is submitted to the connection tracker, but the pipeline does not fork and the ct match fields are not populated. It is strongly recommended to specify a table later than the current table to prevent loops. When the "table" option is used, the packet that continues processing in the specified table will have the ct_state populated. The ct_state may have any of the following flags set: - Tracked (trk): Connection tracking has occurred. - Reply (rpl): The flow is in the reply direction. - Invalid (inv): The connection tracker couldn't identify the connection. - New (new): This is the beginning of a new connection. - Established (est): This is part of an already existing connection. - Related (rel): This connection is related to an existing connection. For more information, consult the ovs-ofctl(8) man pages. Below is a simple example flow table to allow outbound TCP traffic from port 1 and drop traffic from port 2 that was not initiated by port 1: table=0,priority=1,action=drop table=0,arp,action=normal table=0,in_port=1,tcp,ct_state=-trk,action=ct(commit,zone=9),2 table=0,in_port=2,tcp,ct_state=-trk,action=ct(zone=9,table=1) table=1,in_port=2,ct_state=+trk+est,tcp,action=1 table=1,in_port=2,ct_state=+trk+new,tcp,action=drop Based on original design by Justin Pettit, contributions from Thomas Graf and Daniele Di Proietto. Signed-off-by: Joe Stringer <joestringer@nicira.com> Acked-by: Jarno Rajahalme <jrajahalme@nicira.com> Acked-by: Ben Pfaff <blp@nicira.com>
2015-08-11 10:56:09 -07:00
case OVS_ACTION_ATTR_CT:
/* If a flow with this action is slow-pathed, datapath assistance is
* required to implement it. However, we don't support this action
* in the userspace datapath. */
VLOG_WARN("Cannot execute conntrack action in userspace.");
break;
case OVS_ACTION_ATTR_PUSH_VLAN:
case OVS_ACTION_ATTR_POP_VLAN:
case OVS_ACTION_ATTR_PUSH_MPLS:
case OVS_ACTION_ATTR_POP_MPLS:
case OVS_ACTION_ATTR_SET:
case OVS_ACTION_ATTR_SET_MASKED:
case OVS_ACTION_ATTR_SAMPLE:
case OVS_ACTION_ATTR_HASH:
case OVS_ACTION_ATTR_UNSPEC:
case __OVS_ACTION_ATTR_MAX:
OVS_NOT_REACHED();
}
dp_netdev_drop_packets(packets, cnt, may_steal);
}
static void
dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
struct dp_packet **packets, int cnt,
bool may_steal,
const struct nlattr *actions, size_t actions_len)
{
struct dp_netdev_execute_aux aux = { pmd };
odp_execute_actions(&aux, packets, cnt, may_steal, actions,
actions_len, dp_execute_cb);
}
const struct dpif_class dpif_netdev_class = {
"netdev",
dpif_netdev_init,
dpif_netdev_enumerate,
dpif_netdev_port_open_type,
dpif_netdev_open,
dpif_netdev_close,
dpif_netdev_destroy,
dpif_netdev_run,
dpif_netdev_wait,
dpif_netdev_get_stats,
dpif_netdev_port_add,
dpif_netdev_port_del,
dpif_netdev_port_query_by_number,
dpif_netdev_port_query_by_name,
NULL, /* port_get_pid */
2011-01-10 13:12:12 -08:00
dpif_netdev_port_dump_start,
dpif_netdev_port_dump_next,
dpif_netdev_port_dump_done,
dpif_netdev_port_poll,
dpif_netdev_port_poll_wait,
dpif_netdev_flow_flush,
dpif_netdev_flow_dump_create,
dpif_netdev_flow_dump_destroy,
dpif_netdev_flow_dump_thread_create,
dpif_netdev_flow_dump_thread_destroy,
datapath: Change listing flows to use an iterator concept. One of the goals for Open vSwitch is to decouple kernel and userspace software, so that either one can be upgraded or rolled back independent of the other. To do this in full generality, it must be possible to change the kernel's idea of the flow key separately from the userspace version. In turn, that means that flow keys must become variable-length. This does not, however, fit in well with the ODP_FLOW_LIST ioctl in its current form, because that would require userspace to know how much space to allocate for each flow's key in advance, or to allocate as much space as could possibly be needed. Neither choice is very attractive. This commit prepares for a different solution, by replacing ODP_FLOW_LIST by a new ioctl ODP_FLOW_DUMP that retrieves a single flow from the datapath on each call. It is much cleaner to allocate the maximum amount of space for a single flow key than to do so for possibly a very large number of flow keys. As a side effect, this patch also fixes a race condition that sometimes made "ovs-dpctl dump-flows" print an error: previously, flows were listed and then their actions were retrieved, which left a window in which ovs-vswitchd could delete the flow. Now dumping a flow and its actions is a single step, closing that window. Dumping all of the flows in a datapath is no longer an atomic step, so now it is possible to miss some flows or see a single flow twice during iteration, if the flow table is modified by another process. It doesn't look like this should be a problem for ovs-vswitchd. It would be faster to retrieve a number of flows in batch instead of just one at a time, but that will naturally happen later when the kernel datapath interface is changed to use Netlink, so this patch does not bother with it. Signed-off-by: Ben Pfaff <blp@nicira.com> Acked-by: Jesse Gross <jesse@nicira.com>
2010-12-28 10:39:52 -08:00
dpif_netdev_flow_dump_next,
dpif_netdev_operate,
NULL, /* recv_set */
NULL, /* handlers_set */
dpif_netdev_pmd_set,
dpif_netdev_queue_to_priority,
NULL, /* recv */
NULL, /* recv_wait */
NULL, /* recv_purge */
dpif_netdev_register_dp_purge_cb,
dpif_netdev_register_upcall_cb,
dpif_netdev_enable_upcall,
dpif_netdev_disable_upcall,
dpif_netdev_get_datapath_version,
NULL, /* ct_dump_start */
NULL, /* ct_dump_next */
NULL, /* ct_dump_done */
NULL, /* ct_flush */
};
static void
dpif_dummy_change_port_number(struct unixctl_conn *conn, int argc OVS_UNUSED,
const char *argv[], void *aux OVS_UNUSED)
{
struct dp_netdev_port *old_port;
struct dp_netdev_port *new_port;
struct dp_netdev *dp;
odp_port_t port_no;
ovs_mutex_lock(&dp_netdev_mutex);
dp = shash_find_data(&dp_netdevs, argv[1]);
if (!dp || !dpif_netdev_class_is_dummy(dp->class)) {
ovs_mutex_unlock(&dp_netdev_mutex);
unixctl_command_reply_error(conn, "unknown datapath or not a dummy");
return;
}
ovs_refcount_ref(&dp->ref_cnt);
ovs_mutex_unlock(&dp_netdev_mutex);
ovs_mutex_lock(&dp->port_mutex);
if (get_port_by_name(dp, argv[2], &old_port)) {
unixctl_command_reply_error(conn, "unknown port");
goto exit;
}
port_no = u32_to_odp(atoi(argv[3]));
if (!port_no || port_no == ODPP_NONE) {
unixctl_command_reply_error(conn, "bad port number");
goto exit;
}
if (dp_netdev_lookup_port(dp, port_no)) {
unixctl_command_reply_error(conn, "port number already in use");
goto exit;
}
/* Remove old port. */
cmap_remove(&dp->ports, &old_port->node, hash_port_no(old_port->port_no));
ovsrcu_postpone(free, old_port);
/* Insert new port (cmap semantics mean we cannot re-insert 'old_port'). */
new_port = xmemdup(old_port, sizeof *old_port);
new_port->port_no = port_no;
cmap_insert(&dp->ports, &new_port->node, hash_port_no(port_no));
seq_change(dp->port_seq);
unixctl_command_reply(conn, NULL);
exit:
ovs_mutex_unlock(&dp->port_mutex);
dp_netdev_unref(dp);
}
static void
dpif_dummy_delete_port(struct unixctl_conn *conn, int argc OVS_UNUSED,
const char *argv[], void *aux OVS_UNUSED)
{
struct dp_netdev_port *port;
struct dp_netdev *dp;
ovs_mutex_lock(&dp_netdev_mutex);
dp = shash_find_data(&dp_netdevs, argv[1]);
if (!dp || !dpif_netdev_class_is_dummy(dp->class)) {
ovs_mutex_unlock(&dp_netdev_mutex);
unixctl_command_reply_error(conn, "unknown datapath or not a dummy");
return;
}
ovs_refcount_ref(&dp->ref_cnt);
ovs_mutex_unlock(&dp_netdev_mutex);
ovs_mutex_lock(&dp->port_mutex);
if (get_port_by_name(dp, argv[2], &port)) {
unixctl_command_reply_error(conn, "unknown port");
} else if (port->port_no == ODPP_LOCAL) {
unixctl_command_reply_error(conn, "can't delete local port");
} else {
do_del_port(dp, port);
unixctl_command_reply(conn, NULL);
}
ovs_mutex_unlock(&dp->port_mutex);
dp_netdev_unref(dp);
}
static void
dpif_dummy_register__(const char *type)
{
struct dpif_class *class;
class = xmalloc(sizeof *class);
*class = dpif_netdev_class;
class->type = xstrdup(type);
dp_register_provider(class);
}
static void
dpif_dummy_override(const char *type)
{
int error;
/*
* Ignore EAFNOSUPPORT to allow --enable-dummy=system with
* a userland-only build. It's useful for testsuite.
*/
error = dp_unregister_provider(type);
if (error == 0 || error == EAFNOSUPPORT) {
dpif_dummy_register__(type);
}
}
void
dpif_dummy_register(enum dummy_level level)
{
if (level == DUMMY_OVERRIDE_ALL) {
struct sset types;
const char *type;
sset_init(&types);
dp_enumerate_types(&types);
SSET_FOR_EACH (type, &types) {
dpif_dummy_override(type);
}
sset_destroy(&types);
} else if (level == DUMMY_OVERRIDE_SYSTEM) {
dpif_dummy_override("system");
}
dpif_dummy_register__("dummy");
unixctl_command_register("dpif-dummy/change-port-number",
"dp port new-number",
3, 3, dpif_dummy_change_port_number, NULL);
unixctl_command_register("dpif-dummy/delete-port", "dp port",
2, 2, dpif_dummy_delete_port, NULL);
}
/* Datapath Classifier. */
/* A set of rules that all have the same fields wildcarded. */
struct dpcls_subtable {
/* The fields are only used by writers. */
struct cmap_node cmap_node OVS_GUARDED; /* Within dpcls 'subtables_map'. */
/* These fields are accessed by readers. */
struct cmap rules; /* Contains "struct dpcls_rule"s. */
struct netdev_flow_key mask; /* Wildcards for fields (const). */
/* 'mask' must be the last field, additional space is allocated here. */
};
/* Initializes 'cls' as a classifier that initially contains no classification
* rules. */
static void
dpcls_init(struct dpcls *cls)
{
cmap_init(&cls->subtables_map);
pvector_init(&cls->subtables);
}
static void
dpcls_destroy_subtable(struct dpcls *cls, struct dpcls_subtable *subtable)
{
pvector_remove(&cls->subtables, subtable);
cmap_remove(&cls->subtables_map, &subtable->cmap_node,
subtable->mask.hash);
cmap_destroy(&subtable->rules);
ovsrcu_postpone(free, subtable);
}
/* Destroys 'cls'. Rules within 'cls', if any, are not freed; this is the
* caller's responsibility.
* May only be called after all the readers have been terminated. */
static void
dpcls_destroy(struct dpcls *cls)
{
if (cls) {
struct dpcls_subtable *subtable;
CMAP_FOR_EACH (subtable, cmap_node, &cls->subtables_map) {
ovs_assert(cmap_count(&subtable->rules) == 0);
dpcls_destroy_subtable(cls, subtable);
}
cmap_destroy(&cls->subtables_map);
pvector_destroy(&cls->subtables);
}
}
static struct dpcls_subtable *
dpcls_create_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
{
struct dpcls_subtable *subtable;
/* Need to add one. */
subtable = xmalloc(sizeof *subtable
- sizeof subtable->mask.mf + mask->len);
cmap_init(&subtable->rules);
netdev_flow_key_clone(&subtable->mask, mask);
cmap_insert(&cls->subtables_map, &subtable->cmap_node, mask->hash);
pvector_insert(&cls->subtables, subtable, 0);
pvector_publish(&cls->subtables);
return subtable;
}
static inline struct dpcls_subtable *
dpcls_find_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
{
struct dpcls_subtable *subtable;
CMAP_FOR_EACH_WITH_HASH (subtable, cmap_node, mask->hash,
&cls->subtables_map) {
if (netdev_flow_key_equal(&subtable->mask, mask)) {
return subtable;
}
}
return dpcls_create_subtable(cls, mask);
}
/* Insert 'rule' into 'cls'. */
static void
dpcls_insert(struct dpcls *cls, struct dpcls_rule *rule,
const struct netdev_flow_key *mask)
{
struct dpcls_subtable *subtable = dpcls_find_subtable(cls, mask);
rule->mask = &subtable->mask;
cmap_insert(&subtable->rules, &rule->cmap_node, rule->flow.hash);
}
/* Removes 'rule' from 'cls', also destructing the 'rule'. */
static void
dpcls_remove(struct dpcls *cls, struct dpcls_rule *rule)
{
struct dpcls_subtable *subtable;
ovs_assert(rule->mask);
INIT_CONTAINER(subtable, rule->mask, mask);
if (cmap_remove(&subtable->rules, &rule->cmap_node, rule->flow.hash)
== 0) {
dpcls_destroy_subtable(cls, subtable);
pvector_publish(&cls->subtables);
}
}
/* Returns true if 'target' satisfies 'key' in 'mask', that is, if each 1-bit
* in 'mask' the values in 'key' and 'target' are the same. */
static inline bool
dpcls_rule_matches_key(const struct dpcls_rule *rule,
const struct netdev_flow_key *target)
{
const uint64_t *keyp = miniflow_get_values(&rule->flow.mf);
const uint64_t *maskp = miniflow_get_values(&rule->mask->mf);
uint64_t value;
NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(value, target, rule->flow.mf.map) {
if (OVS_UNLIKELY((value & *maskp++) != *keyp++)) {
return false;
}
}
return true;
}
/* For each miniflow in 'flows' performs a classifier lookup writing the result
* into the corresponding slot in 'rules'. If a particular entry in 'flows' is
* NULL it is skipped.
*
* This function is optimized for use in the userspace datapath and therefore
* does not implement a lot of features available in the standard
* classifier_lookup() function. Specifically, it does not implement
* priorities, instead returning any rule which matches the flow.
*
* Returns true if all flows found a corresponding rule. */
static bool
dpcls_lookup(const struct dpcls *cls, const struct netdev_flow_key keys[],
struct dpcls_rule **rules, const size_t cnt)
{
/* The batch size 16 was experimentally found faster than 8 or 32. */
typedef uint16_t map_type;
#define MAP_BITS (sizeof(map_type) * CHAR_BIT)
#if !defined(__CHECKER__) && !defined(_WIN32)
const int N_MAPS = DIV_ROUND_UP(cnt, MAP_BITS);
#else
enum { N_MAPS = DIV_ROUND_UP(NETDEV_MAX_BURST, MAP_BITS) };
#endif
map_type maps[N_MAPS];
struct dpcls_subtable *subtable;
memset(maps, 0xff, sizeof maps);
if (cnt % MAP_BITS) {
maps[N_MAPS - 1] >>= MAP_BITS - cnt % MAP_BITS; /* Clear extra bits. */
}
memset(rules, 0, cnt * sizeof *rules);
PVECTOR_FOR_EACH (subtable, &cls->subtables) {
const struct netdev_flow_key *mkeys = keys;
struct dpcls_rule **mrules = rules;
map_type remains = 0;
int m;
BUILD_ASSERT_DECL(sizeof remains == sizeof *maps);
for (m = 0; m < N_MAPS; m++, mkeys += MAP_BITS, mrules += MAP_BITS) {
uint32_t hashes[MAP_BITS];
const struct cmap_node *nodes[MAP_BITS];
unsigned long map = maps[m];
int i;
if (!map) {
continue; /* Skip empty maps. */
}
/* Compute hashes for the remaining keys. */
ULLONG_FOR_EACH_1(i, map) {
hashes[i] = netdev_flow_key_hash_in_mask(&mkeys[i],
&subtable->mask);
}
/* Lookup. */
map = cmap_find_batch(&subtable->rules, map, hashes, nodes);
/* Check results. */
ULLONG_FOR_EACH_1(i, map) {
struct dpcls_rule *rule;
CMAP_NODE_FOR_EACH (rule, cmap_node, nodes[i]) {
if (OVS_LIKELY(dpcls_rule_matches_key(rule, &mkeys[i]))) {
mrules[i] = rule;
goto next;
}
}
ULLONG_SET0(map, i); /* Did not match. */
next:
; /* Keep Sparse happy. */
}
maps[m] &= ~map; /* Clear the found rules. */
remains |= maps[m];
}
if (!remains) {
return true; /* All found. */
}
}
return false; /* Some misses. */
}