2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-30 05:47:55 +00:00
ovs/ofproto/connmgr.c

1912 lines
59 KiB
C
Raw Normal View History

/*
* Copyright (c) 2009, 2010, 2011, 2012 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "connmgr.h"
#include <errno.h>
#include <stdlib.h>
#include "coverage.h"
#include "fail-open.h"
#include "in-band.h"
#include "odp-util.h"
#include "ofp-actions.h"
#include "ofp-msgs.h"
#include "ofp-util.h"
#include "ofpbuf.h"
#include "ofproto-provider.h"
#include "pinsched.h"
#include "poll-loop.h"
#include "pktbuf.h"
#include "rconn.h"
#include "shash.h"
#include "simap.h"
#include "stream.h"
#include "timeval.h"
#include "vconn.h"
#include "vlog.h"
VLOG_DEFINE_THIS_MODULE(connmgr);
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
/* An OpenFlow connection. */
struct ofconn {
/* Configuration that persists from one connection to the next. */
struct list node; /* In struct connmgr's "all_conns" list. */
struct hmap_node hmap_node; /* In struct connmgr's "controllers" map. */
struct connmgr *connmgr; /* Connection's manager. */
struct rconn *rconn; /* OpenFlow connection. */
enum ofconn_type type; /* Type. */
enum ofproto_band band; /* In-band or out-of-band? */
bool enable_async_msgs; /* Initially enable async messages? */
/* State that should be cleared from one connection to the next. */
/* OpenFlow state. */
enum nx_role role; /* Role. */
enum ofputil_protocol protocol; /* Current protocol variant. */
enum nx_packet_in_format packet_in_format; /* OFPT_PACKET_IN format. */
/* Asynchronous flow table operation support. */
struct list opgroups; /* Contains pending "ofopgroups", if any. */
struct ofpbuf *blocked; /* Postponed OpenFlow message, if any. */
bool retry; /* True if 'blocked' is ready to try again. */
/* OFPT_PACKET_IN related data. */
struct rconn_packet_counter *packet_in_counter; /* # queued on 'rconn'. */
#define N_SCHEDULERS 2
struct pinsched *schedulers[N_SCHEDULERS];
struct pktbuf *pktbuf; /* OpenFlow packet buffers. */
int miss_send_len; /* Bytes to send of buffered packets. */
uint16_t controller_id; /* Connection controller ID. */
/* Number of OpenFlow messages queued on 'rconn' as replies to OpenFlow
* requests, and the maximum number before we stop reading OpenFlow
* requests. */
#define OFCONN_REPLY_MAX 100
struct rconn_packet_counter *reply_counter;
/* Asynchronous message configuration in each possible roles.
*
* A 1-bit enables sending an asynchronous message for one possible reason
* that the message might be generated, a 0-bit disables it. */
uint32_t master_async_config[OAM_N_TYPES]; /* master, other */
uint32_t slave_async_config[OAM_N_TYPES]; /* slave */
/* Flow monitors. */
struct hmap monitors; /* Contains "struct ofmonitor"s. */
struct list updates; /* List of "struct ofpbuf"s. */
bool sent_abbrev_update; /* Does 'updates' contain NXFME_ABBREV? */
struct rconn_packet_counter *monitor_counter;
uint64_t monitor_paused;
};
static struct ofconn *ofconn_create(struct connmgr *, struct rconn *,
enum ofconn_type, bool enable_async_msgs);
static void ofconn_destroy(struct ofconn *);
static void ofconn_flush(struct ofconn *);
static void ofconn_reconfigure(struct ofconn *,
const struct ofproto_controller *);
static void ofconn_run(struct ofconn *,
bool (*handle_openflow)(struct ofconn *,
struct ofpbuf *ofp_msg));
static void ofconn_wait(struct ofconn *, bool handling_openflow);
static const char *ofconn_get_target(const struct ofconn *);
static char *ofconn_make_name(const struct connmgr *, const char *target);
static void ofconn_set_rate_limit(struct ofconn *, int rate, int burst);
static void ofconn_send(const struct ofconn *, struct ofpbuf *,
struct rconn_packet_counter *);
static void do_send_packet_in(struct ofpbuf *, void *ofconn_);
/* A listener for incoming OpenFlow "service" connections. */
struct ofservice {
struct hmap_node node; /* In struct connmgr's "services" hmap. */
struct pvconn *pvconn; /* OpenFlow connection listener. */
/* These are not used by ofservice directly. They are settings for
* accepted "struct ofconn"s from the pvconn. */
int probe_interval; /* Max idle time before probing, in seconds. */
int rate_limit; /* Max packet-in rate in packets per second. */
int burst_limit; /* Limit on accumulating packet credits. */
bool enable_async_msgs; /* Initially enable async messages? */
uint8_t dscp; /* DSCP Value for controller connection */
};
static void ofservice_reconfigure(struct ofservice *,
const struct ofproto_controller *);
static int ofservice_create(struct connmgr *, const char *target, uint8_t dscp);
static void ofservice_destroy(struct connmgr *, struct ofservice *);
static struct ofservice *ofservice_lookup(struct connmgr *,
const char *target);
/* Connection manager for an OpenFlow switch. */
struct connmgr {
struct ofproto *ofproto;
char *name;
char *local_port_name;
/* OpenFlow connections. */
struct hmap controllers; /* Controller "struct ofconn"s. */
struct list all_conns; /* Contains "struct ofconn"s. */
/* OpenFlow listeners. */
struct hmap services; /* Contains "struct ofservice"s. */
struct pvconn **snoops;
size_t n_snoops;
/* Fail open. */
struct fail_open *fail_open;
enum ofproto_fail_mode fail_mode;
/* In-band control. */
struct in_band *in_band;
struct sockaddr_in *extra_in_band_remotes;
size_t n_extra_remotes;
int in_band_queue;
};
static void update_in_band_remotes(struct connmgr *);
static void add_snooper(struct connmgr *, struct vconn *);
static void ofmonitor_run(struct connmgr *);
static void ofmonitor_wait(struct connmgr *);
/* Creates and returns a new connection manager owned by 'ofproto'. 'name' is
* a name for the ofproto suitable for using in log messages.
* 'local_port_name' is the name of the local port (OFPP_LOCAL) within
* 'ofproto'. */
struct connmgr *
connmgr_create(struct ofproto *ofproto,
const char *name, const char *local_port_name)
{
struct connmgr *mgr;
mgr = xmalloc(sizeof *mgr);
mgr->ofproto = ofproto;
mgr->name = xstrdup(name);
mgr->local_port_name = xstrdup(local_port_name);
hmap_init(&mgr->controllers);
list_init(&mgr->all_conns);
hmap_init(&mgr->services);
mgr->snoops = NULL;
mgr->n_snoops = 0;
mgr->fail_open = NULL;
mgr->fail_mode = OFPROTO_FAIL_SECURE;
mgr->in_band = NULL;
mgr->extra_in_band_remotes = NULL;
mgr->n_extra_remotes = 0;
mgr->in_band_queue = -1;
return mgr;
}
/* Frees 'mgr' and all of its resources. */
void
connmgr_destroy(struct connmgr *mgr)
{
struct ofservice *ofservice, *next_ofservice;
struct ofconn *ofconn, *next_ofconn;
size_t i;
if (!mgr) {
return;
}
LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &mgr->all_conns) {
ofconn_destroy(ofconn);
}
hmap_destroy(&mgr->controllers);
HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &mgr->services) {
ofservice_destroy(mgr, ofservice);
}
hmap_destroy(&mgr->services);
for (i = 0; i < mgr->n_snoops; i++) {
pvconn_close(mgr->snoops[i]);
}
free(mgr->snoops);
fail_open_destroy(mgr->fail_open);
mgr->fail_open = NULL;
in_band_destroy(mgr->in_band);
mgr->in_band = NULL;
free(mgr->extra_in_band_remotes);
free(mgr->name);
free(mgr->local_port_name);
free(mgr);
}
/* Does all of the periodic maintenance required by 'mgr'.
*
* If 'handle_openflow' is nonnull, calls 'handle_openflow' for each message
* received on an OpenFlow connection, passing along the OpenFlow connection
* itself and the message that was sent. If 'handle_openflow' returns true,
* the message is considered to be fully processed. If 'handle_openflow'
* returns false, the message is considered not to have been processed at all;
* it will be stored and re-presented to 'handle_openflow' following the next
* call to connmgr_retry(). 'handle_openflow' must not modify or free the
* message.
*
* If 'handle_openflow' is NULL, no OpenFlow messages will be processed and
* other activities that could affect the flow table (in-band processing,
* fail-open processing) are suppressed too. */
void
connmgr_run(struct connmgr *mgr,
bool (*handle_openflow)(struct ofconn *, struct ofpbuf *ofp_msg))
{
struct ofconn *ofconn, *next_ofconn;
struct ofservice *ofservice;
size_t i;
if (handle_openflow && mgr->in_band) {
if (!in_band_run(mgr->in_band)) {
in_band_destroy(mgr->in_band);
mgr->in_band = NULL;
}
}
LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &mgr->all_conns) {
ofconn_run(ofconn, handle_openflow);
}
ofmonitor_run(mgr);
/* Fail-open maintenance. Do this after processing the ofconns since
* fail-open checks the status of the controller rconn. */
if (handle_openflow && mgr->fail_open) {
fail_open_run(mgr->fail_open);
}
HMAP_FOR_EACH (ofservice, node, &mgr->services) {
struct vconn *vconn;
int retval;
retval = pvconn_accept(ofservice->pvconn, OFP10_VERSION, &vconn);
if (!retval) {
struct rconn *rconn;
char *name;
/* Passing default value for creation of the rconn */
rconn = rconn_create(ofservice->probe_interval, 0, ofservice->dscp);
name = ofconn_make_name(mgr, vconn_get_name(vconn));
rconn_connect_unreliably(rconn, vconn, name);
free(name);
ofconn = ofconn_create(mgr, rconn, OFCONN_SERVICE,
ofservice->enable_async_msgs);
ofconn_set_rate_limit(ofconn, ofservice->rate_limit,
ofservice->burst_limit);
} else if (retval != EAGAIN) {
VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
}
}
for (i = 0; i < mgr->n_snoops; i++) {
struct vconn *vconn;
int retval;
retval = pvconn_accept(mgr->snoops[i], OFP10_VERSION, &vconn);
if (!retval) {
add_snooper(mgr, vconn);
} else if (retval != EAGAIN) {
VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
}
}
}
/* Causes the poll loop to wake up when connmgr_run() needs to run.
*
* If 'handling_openflow' is true, arriving OpenFlow messages and other
* activities that affect the flow table will wake up the poll loop. If
* 'handling_openflow' is false, they will not. */
void
connmgr_wait(struct connmgr *mgr, bool handling_openflow)
{
struct ofservice *ofservice;
struct ofconn *ofconn;
size_t i;
LIST_FOR_EACH (ofconn, node, &mgr->all_conns) {
ofconn_wait(ofconn, handling_openflow);
}
ofmonitor_wait(mgr);
if (handling_openflow && mgr->in_band) {
in_band_wait(mgr->in_band);
}
if (handling_openflow && mgr->fail_open) {
fail_open_wait(mgr->fail_open);
}
HMAP_FOR_EACH (ofservice, node, &mgr->services) {
pvconn_wait(ofservice->pvconn);
}
for (i = 0; i < mgr->n_snoops; i++) {
pvconn_wait(mgr->snoops[i]);
}
}
/* Adds some memory usage statistics for 'mgr' into 'usage', for use with
* memory_report(). */
void
connmgr_get_memory_usage(const struct connmgr *mgr, struct simap *usage)
{
const struct ofconn *ofconn;
unsigned int packets = 0;
unsigned int ofconns = 0;
LIST_FOR_EACH (ofconn, node, &mgr->all_conns) {
int i;
ofconns++;
packets += rconn_count_txqlen(ofconn->rconn);
for (i = 0; i < N_SCHEDULERS; i++) {
packets += pinsched_count_txqlen(ofconn->schedulers[i]);
}
packets += pktbuf_count_packets(ofconn->pktbuf);
}
simap_increase(usage, "ofconns", ofconns);
simap_increase(usage, "packets", packets);
}
/* Returns the ofproto that owns 'ofconn''s connmgr. */
struct ofproto *
ofconn_get_ofproto(const struct ofconn *ofconn)
{
return ofconn->connmgr->ofproto;
}
/* If processing of OpenFlow messages was blocked on any 'mgr' ofconns by
* returning false to the 'handle_openflow' callback to connmgr_run(), this
* re-enables them. */
void
connmgr_retry(struct connmgr *mgr)
{
struct ofconn *ofconn;
LIST_FOR_EACH (ofconn, node, &mgr->all_conns) {
ofconn->retry = true;
}
}
/* OpenFlow configuration. */
static void add_controller(struct connmgr *, const char *target, uint8_t dscp);
static struct ofconn *find_controller_by_target(struct connmgr *,
const char *target);
static void update_fail_open(struct connmgr *);
static int set_pvconns(struct pvconn ***pvconnsp, size_t *n_pvconnsp,
const struct sset *);
/* Returns true if 'mgr' has any configured primary controllers.
*
* Service controllers do not count, but configured primary controllers do
* count whether or not they are currently connected. */
bool
connmgr_has_controllers(const struct connmgr *mgr)
{
return !hmap_is_empty(&mgr->controllers);
}
/* Initializes 'info' and populates it with information about each configured
* primary controller. The keys in 'info' are the controllers' targets; the
* data values are corresponding "struct ofproto_controller_info".
*
* The caller owns 'info' and everything in it and should free it when it is no
* longer needed. */
void
connmgr_get_controller_info(struct connmgr *mgr, struct shash *info)
{
const struct ofconn *ofconn;
HMAP_FOR_EACH (ofconn, hmap_node, &mgr->controllers) {
const struct rconn *rconn = ofconn->rconn;
const char *target = rconn_get_target(rconn);
if (!shash_find(info, target)) {
struct ofproto_controller_info *cinfo = xmalloc(sizeof *cinfo);
time_t now = time_now();
time_t last_connection = rconn_get_last_connection(rconn);
time_t last_disconnect = rconn_get_last_disconnect(rconn);
int last_error = rconn_get_last_error(rconn);
shash_add(info, target, cinfo);
cinfo->is_connected = rconn_is_connected(rconn);
cinfo->role = ofconn->role;
cinfo->pairs.n = 0;
if (last_error) {
cinfo->pairs.keys[cinfo->pairs.n] = "last_error";
cinfo->pairs.values[cinfo->pairs.n++]
= xstrdup(ovs_retval_to_string(last_error));
}
cinfo->pairs.keys[cinfo->pairs.n] = "state";
cinfo->pairs.values[cinfo->pairs.n++]
= xstrdup(rconn_get_state(rconn));
if (last_connection != TIME_MIN) {
cinfo->pairs.keys[cinfo->pairs.n] = "sec_since_connect";
cinfo->pairs.values[cinfo->pairs.n++]
= xasprintf("%ld", (long int) (now - last_connection));
}
if (last_disconnect != TIME_MIN) {
cinfo->pairs.keys[cinfo->pairs.n] = "sec_since_disconnect";
cinfo->pairs.values[cinfo->pairs.n++]
= xasprintf("%ld", (long int) (now - last_disconnect));
}
}
}
}
void
connmgr_free_controller_info(struct shash *info)
{
struct shash_node *node;
SHASH_FOR_EACH (node, info) {
struct ofproto_controller_info *cinfo = node->data;
while (cinfo->pairs.n) {
free(CONST_CAST(char *, cinfo->pairs.values[--cinfo->pairs.n]));
}
free(cinfo);
}
shash_destroy(info);
}
/* Changes 'mgr''s set of controllers to the 'n_controllers' controllers in
* 'controllers'. */
void
connmgr_set_controllers(struct connmgr *mgr,
const struct ofproto_controller *controllers,
size_t n_controllers)
{
bool had_controllers = connmgr_has_controllers(mgr);
struct shash new_controllers;
struct ofconn *ofconn, *next_ofconn;
struct ofservice *ofservice, *next_ofservice;
size_t i;
/* Create newly configured controllers and services.
* Create a name to ofproto_controller mapping in 'new_controllers'. */
shash_init(&new_controllers);
for (i = 0; i < n_controllers; i++) {
const struct ofproto_controller *c = &controllers[i];
if (!vconn_verify_name(c->target)) {
if (!find_controller_by_target(mgr, c->target)) {
VLOG_INFO("%s: added primary controller \"%s\"",
mgr->name, c->target);
add_controller(mgr, c->target, c->dscp);
}
} else if (!pvconn_verify_name(c->target)) {
if (!ofservice_lookup(mgr, c->target)) {
VLOG_INFO("%s: added service controller \"%s\"",
mgr->name, c->target);
ofservice_create(mgr, c->target, c->dscp);
}
} else {
VLOG_WARN_RL(&rl, "%s: unsupported controller \"%s\"",
mgr->name, c->target);
continue;
}
shash_add_once(&new_controllers, c->target, &controllers[i]);
}
/* Delete controllers that are no longer configured.
* Update configuration of all now-existing controllers. */
HMAP_FOR_EACH_SAFE (ofconn, next_ofconn, hmap_node, &mgr->controllers) {
const char *target = ofconn_get_target(ofconn);
struct ofproto_controller *c;
c = shash_find_data(&new_controllers, target);
if (!c) {
VLOG_INFO("%s: removed primary controller \"%s\"",
mgr->name, target);
ofconn_destroy(ofconn);
} else {
ofconn_reconfigure(ofconn, c);
}
}
/* Delete services that are no longer configured.
* Update configuration of all now-existing services. */
HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &mgr->services) {
const char *target = pvconn_get_name(ofservice->pvconn);
struct ofproto_controller *c;
c = shash_find_data(&new_controllers, target);
if (!c) {
VLOG_INFO("%s: removed service controller \"%s\"",
mgr->name, target);
ofservice_destroy(mgr, ofservice);
} else {
ofservice_reconfigure(ofservice, c);
}
}
shash_destroy(&new_controllers);
update_in_band_remotes(mgr);
update_fail_open(mgr);
if (had_controllers != connmgr_has_controllers(mgr)) {
ofproto_flush_flows(mgr->ofproto);
}
}
/* Drops the connections between 'mgr' and all of its primary and secondary
* controllers, forcing them to reconnect. */
void
connmgr_reconnect(const struct connmgr *mgr)
{
struct ofconn *ofconn;
LIST_FOR_EACH (ofconn, node, &mgr->all_conns) {
rconn_reconnect(ofconn->rconn);
}
}
/* Sets the "snoops" for 'mgr' to the pvconn targets listed in 'snoops'.
*
* A "snoop" is a pvconn to which every OpenFlow message to or from the most
* important controller on 'mgr' is mirrored. */
int
connmgr_set_snoops(struct connmgr *mgr, const struct sset *snoops)
{
return set_pvconns(&mgr->snoops, &mgr->n_snoops, snoops);
}
/* Adds each of the snoops currently configured on 'mgr' to 'snoops'. */
void
connmgr_get_snoops(const struct connmgr *mgr, struct sset *snoops)
{
size_t i;
for (i = 0; i < mgr->n_snoops; i++) {
sset_add(snoops, pvconn_get_name(mgr->snoops[i]));
}
}
/* Returns true if 'mgr' has at least one snoop, false if it has none. */
bool
connmgr_has_snoops(const struct connmgr *mgr)
{
return mgr->n_snoops > 0;
}
/* Creates a new controller for 'target' in 'mgr'. update_controller() needs
* to be called later to finish the new ofconn's configuration. */
static void
add_controller(struct connmgr *mgr, const char *target, uint8_t dscp)
{
char *name = ofconn_make_name(mgr, target);
struct ofconn *ofconn;
ofconn = ofconn_create(mgr, rconn_create(5, 8, dscp), OFCONN_PRIMARY, true);
ofconn->pktbuf = pktbuf_create();
rconn_connect(ofconn->rconn, target, name);
hmap_insert(&mgr->controllers, &ofconn->hmap_node, hash_string(target, 0));
free(name);
}
static struct ofconn *
find_controller_by_target(struct connmgr *mgr, const char *target)
{
struct ofconn *ofconn;
HMAP_FOR_EACH_WITH_HASH (ofconn, hmap_node,
hash_string(target, 0), &mgr->controllers) {
if (!strcmp(ofconn_get_target(ofconn), target)) {
return ofconn;
}
}
return NULL;
}
static void
update_in_band_remotes(struct connmgr *mgr)
{
struct sockaddr_in *addrs;
size_t max_addrs, n_addrs;
struct ofconn *ofconn;
size_t i;
/* Allocate enough memory for as many remotes as we could possibly have. */
max_addrs = mgr->n_extra_remotes + hmap_count(&mgr->controllers);
addrs = xmalloc(max_addrs * sizeof *addrs);
n_addrs = 0;
/* Add all the remotes. */
HMAP_FOR_EACH (ofconn, hmap_node, &mgr->controllers) {
struct sockaddr_in *sin = &addrs[n_addrs];
const char *target = rconn_get_target(ofconn->rconn);
if (ofconn->band == OFPROTO_OUT_OF_BAND) {
continue;
}
if (stream_parse_target_with_default_ports(target,
OFP_TCP_PORT,
OFP_SSL_PORT,
sin)) {
n_addrs++;
}
}
for (i = 0; i < mgr->n_extra_remotes; i++) {
addrs[n_addrs++] = mgr->extra_in_band_remotes[i];
}
/* Create or update or destroy in-band. */
if (n_addrs) {
if (!mgr->in_band) {
in_band_create(mgr->ofproto, mgr->local_port_name, &mgr->in_band);
}
in_band_set_queue(mgr->in_band, mgr->in_band_queue);
} else {
/* in_band_run() needs a chance to delete any existing in-band flows.
* We will destroy mgr->in_band after it's done with that. */
}
if (mgr->in_band) {
in_band_set_remotes(mgr->in_band, addrs, n_addrs);
}
/* Clean up. */
free(addrs);
}
static void
update_fail_open(struct connmgr *mgr)
{
if (connmgr_has_controllers(mgr)
&& mgr->fail_mode == OFPROTO_FAIL_STANDALONE) {
if (!mgr->fail_open) {
mgr->fail_open = fail_open_create(mgr->ofproto, mgr);
}
} else {
fail_open_destroy(mgr->fail_open);
mgr->fail_open = NULL;
}
}
static int
set_pvconns(struct pvconn ***pvconnsp, size_t *n_pvconnsp,
const struct sset *sset)
{
struct pvconn **pvconns = *pvconnsp;
size_t n_pvconns = *n_pvconnsp;
const char *name;
int retval = 0;
size_t i;
for (i = 0; i < n_pvconns; i++) {
pvconn_close(pvconns[i]);
}
free(pvconns);
pvconns = xmalloc(sset_count(sset) * sizeof *pvconns);
n_pvconns = 0;
SSET_FOR_EACH (name, sset) {
struct pvconn *pvconn;
int error;
error = pvconn_open(name, &pvconn, 0);
if (!error) {
pvconns[n_pvconns++] = pvconn;
} else {
VLOG_ERR("failed to listen on %s: %s", name, strerror(error));
if (!retval) {
retval = error;
}
}
}
*pvconnsp = pvconns;
*n_pvconnsp = n_pvconns;
return retval;
}
/* Returns a "preference level" for snooping 'ofconn'. A higher return value
* means that 'ofconn' is more interesting for monitoring than a lower return
* value. */
static int
snoop_preference(const struct ofconn *ofconn)
{
switch (ofconn->role) {
case NX_ROLE_MASTER:
return 3;
case NX_ROLE_OTHER:
return 2;
case NX_ROLE_SLAVE:
return 1;
default:
/* Shouldn't happen. */
return 0;
}
}
/* One of 'mgr''s "snoop" pvconns has accepted a new connection on 'vconn'.
* Connects this vconn to a controller. */
static void
add_snooper(struct connmgr *mgr, struct vconn *vconn)
{
struct ofconn *ofconn, *best;
/* Pick a controller for monitoring. */
best = NULL;
LIST_FOR_EACH (ofconn, node, &mgr->all_conns) {
if (ofconn->type == OFCONN_PRIMARY
&& (!best || snoop_preference(ofconn) > snoop_preference(best))) {
best = ofconn;
}
}
if (best) {
rconn_add_monitor(best->rconn, vconn);
} else {
VLOG_INFO_RL(&rl, "no controller connection to snoop");
vconn_close(vconn);
}
}
/* Public ofconn functions. */
/* Returns the connection type, either OFCONN_PRIMARY or OFCONN_SERVICE. */
enum ofconn_type
ofconn_get_type(const struct ofconn *ofconn)
{
return ofconn->type;
}
/* Returns the role configured for 'ofconn'.
*
* The default role, if no other role has been set, is NX_ROLE_OTHER. */
enum nx_role
ofconn_get_role(const struct ofconn *ofconn)
{
return ofconn->role;
}
/* Changes 'ofconn''s role to 'role'. If 'role' is NX_ROLE_MASTER then any
* existing master is demoted to a slave. */
void
ofconn_set_role(struct ofconn *ofconn, enum nx_role role)
{
if (role == NX_ROLE_MASTER) {
struct ofconn *other;
HMAP_FOR_EACH (other, hmap_node, &ofconn->connmgr->controllers) {
if (other->role == NX_ROLE_MASTER) {
other->role = NX_ROLE_SLAVE;
}
}
}
ofconn->role = role;
}
void
ofconn_set_invalid_ttl_to_controller(struct ofconn *ofconn, bool enable)
{
uint32_t bit = 1u << OFPR_INVALID_TTL;
if (enable) {
ofconn->master_async_config[OAM_PACKET_IN] |= bit;
} else {
ofconn->master_async_config[OAM_PACKET_IN] &= ~bit;
}
}
bool
ofconn_get_invalid_ttl_to_controller(struct ofconn *ofconn)
{
uint32_t bit = 1u << OFPR_INVALID_TTL;
return (ofconn->master_async_config[OAM_PACKET_IN] & bit) != 0;
}
/* Returns the currently configured protocol for 'ofconn', one of OFPUTIL_P_*.
*
* The default, if no other format has been set, is OFPUTIL_P_OPENFLOW10. */
enum ofputil_protocol
ofconn_get_protocol(struct ofconn *ofconn)
{
return ofconn->protocol;
}
/* Sets the protocol for 'ofconn' to 'protocol' (one of OFPUTIL_P_*).
*
* (This doesn't actually send anything to accomplish this. Presumably the
* caller already did that.) */
void
ofconn_set_protocol(struct ofconn *ofconn, enum ofputil_protocol protocol)
{
ofconn->protocol = protocol;
}
/* Returns the currently configured packet in format for 'ofconn', one of
* NXPIF_*.
*
* The default, if no other format has been set, is NXPIF_OPENFLOW10. */
enum nx_packet_in_format
ofconn_get_packet_in_format(struct ofconn *ofconn)
{
return ofconn->packet_in_format;
}
/* Sets the packet in format for 'ofconn' to 'packet_in_format' (one of
* NXPIF_*). */
void
ofconn_set_packet_in_format(struct ofconn *ofconn,
enum nx_packet_in_format packet_in_format)
{
ofconn->packet_in_format = packet_in_format;
}
/* Sets the controller connection ID for 'ofconn' to 'controller_id'.
*
* The connection controller ID is used for OFPP_CONTROLLER and
* NXAST_CONTROLLER actions. See "struct nx_action_controller" for details. */
void
ofconn_set_controller_id(struct ofconn *ofconn, uint16_t controller_id)
{
ofconn->controller_id = controller_id;
}
/* Returns the default miss send length for 'ofconn'. */
int
ofconn_get_miss_send_len(const struct ofconn *ofconn)
{
return ofconn->miss_send_len;
}
/* Sets the default miss send length for 'ofconn' to 'miss_send_len'. */
void
ofconn_set_miss_send_len(struct ofconn *ofconn, int miss_send_len)
{
ofconn->miss_send_len = miss_send_len;
}
void
ofconn_set_async_config(struct ofconn *ofconn,
const uint32_t master_masks[OAM_N_TYPES],
const uint32_t slave_masks[OAM_N_TYPES])
{
size_t size = sizeof ofconn->master_async_config;
memcpy(ofconn->master_async_config, master_masks, size);
memcpy(ofconn->slave_async_config, slave_masks, size);
}
/* Sends 'msg' on 'ofconn', accounting it as a reply. (If there is a
* sufficient number of OpenFlow replies in-flight on a single ofconn, then the
* connmgr will stop accepting new OpenFlow requests on that ofconn until the
* controller has accepted some of the replies.) */
void
ofconn_send_reply(const struct ofconn *ofconn, struct ofpbuf *msg)
{
ofconn_send(ofconn, msg, ofconn->reply_counter);
}
/* Sends each of the messages in list 'replies' on 'ofconn' in order,
* accounting them as replies. */
void
ofconn_send_replies(const struct ofconn *ofconn, struct list *replies)
{
struct ofpbuf *reply, *next;
LIST_FOR_EACH_SAFE (reply, next, list_node, replies) {
list_remove(&reply->list_node);
ofconn_send_reply(ofconn, reply);
}
}
/* Sends 'error' on 'ofconn', as a reply to 'request'. Only at most the
* first 64 bytes of 'request' are used. */
void
ofconn_send_error(const struct ofconn *ofconn,
const struct ofp_header *request, enum ofperr error)
{
struct ofpbuf *reply;
reply = ofperr_encode_reply(error, request);
if (reply) {
static struct vlog_rate_limit err_rl = VLOG_RATE_LIMIT_INIT(10, 10);
if (!VLOG_DROP_INFO(&err_rl)) {
const char *type_name;
size_t request_len;
enum ofpraw raw;
request_len = ntohs(request->length);
type_name = (!ofpraw_decode_partial(&raw, request,
MIN(64, request_len))
? ofpraw_get_name(raw)
: "invalid");
VLOG_INFO("%s: sending %s error reply to %s message",
rconn_get_name(ofconn->rconn), ofperr_to_string(error),
type_name);
}
ofconn_send_reply(ofconn, reply);
}
}
/* Same as pktbuf_retrieve(), using the pktbuf owned by 'ofconn'. */
enum ofperr
ofconn_pktbuf_retrieve(struct ofconn *ofconn, uint32_t id,
struct ofpbuf **bufferp, uint16_t *in_port)
{
return pktbuf_retrieve(ofconn->pktbuf, id, bufferp, in_port);
}
/* Returns true if 'ofconn' has any pending opgroups. */
bool
ofconn_has_pending_opgroups(const struct ofconn *ofconn)
{
return !list_is_empty(&ofconn->opgroups);
}
/* Adds 'ofconn_node' to 'ofconn''s list of pending opgroups.
*
* If 'ofconn' is destroyed or its connection drops, then 'ofconn' will remove
* 'ofconn_node' from the list and re-initialize it with list_init(). The
* client may, therefore, use list_is_empty(ofconn_node) to determine whether
* 'ofconn_node' is still associated with an active ofconn.
*
* The client may also remove ofconn_node from the list itself, with
* list_remove(). */
void
ofconn_add_opgroup(struct ofconn *ofconn, struct list *ofconn_node)
{
list_push_back(&ofconn->opgroups, ofconn_node);
}
/* Private ofconn functions. */
static const char *
ofconn_get_target(const struct ofconn *ofconn)
{
return rconn_get_target(ofconn->rconn);
}
static struct ofconn *
ofconn_create(struct connmgr *mgr, struct rconn *rconn, enum ofconn_type type,
bool enable_async_msgs)
{
struct ofconn *ofconn;
ofconn = xzalloc(sizeof *ofconn);
ofconn->connmgr = mgr;
list_push_back(&mgr->all_conns, &ofconn->node);
ofconn->rconn = rconn;
ofconn->type = type;
ofconn->enable_async_msgs = enable_async_msgs;
list_init(&ofconn->opgroups);
hmap_init(&ofconn->monitors);
list_init(&ofconn->updates);
ofconn_flush(ofconn);
return ofconn;
}
/* Clears all of the state in 'ofconn' that should not persist from one
* connection to the next. */
static void
ofconn_flush(struct ofconn *ofconn)
{
struct ofmonitor *monitor, *next_monitor;
int i;
ofconn->role = NX_ROLE_OTHER;
ofconn->protocol = OFPUTIL_P_OF10;
ofconn->packet_in_format = NXPIF_OPENFLOW10;
/* Disassociate 'ofconn' from all of the ofopgroups that it initiated that
* have not yet completed. (Those ofopgroups will still run to completion
* in the usual way, but any errors that they run into will not be reported
* on any OpenFlow channel.)
*
* Also discard any blocked operation on 'ofconn'. */
while (!list_is_empty(&ofconn->opgroups)) {
list_init(list_pop_front(&ofconn->opgroups));
}
ofpbuf_delete(ofconn->blocked);
ofconn->blocked = NULL;
rconn_packet_counter_destroy(ofconn->packet_in_counter);
ofconn->packet_in_counter = rconn_packet_counter_create();
for (i = 0; i < N_SCHEDULERS; i++) {
if (ofconn->schedulers[i]) {
int rate, burst;
pinsched_get_limits(ofconn->schedulers[i], &rate, &burst);
pinsched_destroy(ofconn->schedulers[i]);
ofconn->schedulers[i] = pinsched_create(rate, burst);
}
}
if (ofconn->pktbuf) {
pktbuf_destroy(ofconn->pktbuf);
ofconn->pktbuf = pktbuf_create();
}
ofconn->miss_send_len = (ofconn->type == OFCONN_PRIMARY
? OFP_DEFAULT_MISS_SEND_LEN
: 0);
ofconn->controller_id = 0;
rconn_packet_counter_destroy(ofconn->reply_counter);
ofconn->reply_counter = rconn_packet_counter_create();
if (ofconn->enable_async_msgs) {
uint32_t *master = ofconn->master_async_config;
uint32_t *slave = ofconn->slave_async_config;
/* "master" and "other" roles get all asynchronous messages by default,
* except that the controller needs to enable nonstandard "packet-in"
* reasons itself. */
master[OAM_PACKET_IN] = (1u << OFPR_NO_MATCH) | (1u << OFPR_ACTION);
master[OAM_PORT_STATUS] = ((1u << OFPPR_ADD)
| (1u << OFPPR_DELETE)
| (1u << OFPPR_MODIFY));
master[OAM_FLOW_REMOVED] = ((1u << OFPRR_IDLE_TIMEOUT)
| (1u << OFPRR_HARD_TIMEOUT)
| (1u << OFPRR_DELETE));
/* "slave" role gets port status updates by default. */
slave[OAM_PACKET_IN] = 0;
slave[OAM_PORT_STATUS] = ((1u << OFPPR_ADD)
| (1u << OFPPR_DELETE)
| (1u << OFPPR_MODIFY));
slave[OAM_FLOW_REMOVED] = 0;
} else {
memset(ofconn->master_async_config, 0,
sizeof ofconn->master_async_config);
memset(ofconn->slave_async_config, 0,
sizeof ofconn->slave_async_config);
}
HMAP_FOR_EACH_SAFE (monitor, next_monitor, ofconn_node,
&ofconn->monitors) {
ofmonitor_destroy(monitor);
}
rconn_packet_counter_destroy(ofconn->monitor_counter);
ofconn->monitor_counter = rconn_packet_counter_create();
ofpbuf_list_delete(&ofconn->updates); /* ...but it should be empty. */
}
static void
ofconn_destroy(struct ofconn *ofconn)
{
ofconn_flush(ofconn);
if (ofconn->type == OFCONN_PRIMARY) {
hmap_remove(&ofconn->connmgr->controllers, &ofconn->hmap_node);
}
list_remove(&ofconn->node);
rconn_destroy(ofconn->rconn);
rconn_packet_counter_destroy(ofconn->packet_in_counter);
rconn_packet_counter_destroy(ofconn->reply_counter);
pktbuf_destroy(ofconn->pktbuf);
rconn_packet_counter_destroy(ofconn->monitor_counter);
free(ofconn);
}
/* Reconfigures 'ofconn' to match 'c'. 'ofconn' and 'c' must have the same
* target. */
static void
ofconn_reconfigure(struct ofconn *ofconn, const struct ofproto_controller *c)
{
int probe_interval;
ofconn->band = c->band;
ofconn->enable_async_msgs = c->enable_async_msgs;
rconn_set_max_backoff(ofconn->rconn, c->max_backoff);
probe_interval = c->probe_interval ? MAX(c->probe_interval, 5) : 0;
rconn_set_probe_interval(ofconn->rconn, probe_interval);
ofconn_set_rate_limit(ofconn, c->rate_limit, c->burst_limit);
/* If dscp value changed reconnect. */
if (c->dscp != rconn_get_dscp(ofconn->rconn)) {
rconn_set_dscp(ofconn->rconn, c->dscp);
rconn_reconnect(ofconn->rconn);
}
}
/* Returns true if it makes sense for 'ofconn' to receive and process OpenFlow
* messages. */
static bool
ofconn_may_recv(const struct ofconn *ofconn)
{
int count = ofconn->reply_counter->n_packets;
return (!ofconn->blocked || ofconn->retry) && count < OFCONN_REPLY_MAX;
}
static void
ofconn_run(struct ofconn *ofconn,
bool (*handle_openflow)(struct ofconn *, struct ofpbuf *ofp_msg))
{
struct connmgr *mgr = ofconn->connmgr;
size_t i;
for (i = 0; i < N_SCHEDULERS; i++) {
pinsched_run(ofconn->schedulers[i], do_send_packet_in, ofconn);
}
rconn_run(ofconn->rconn);
if (handle_openflow) {
/* Limit the number of iterations to avoid starving other tasks. */
for (i = 0; i < 50 && ofconn_may_recv(ofconn); i++) {
struct ofpbuf *of_msg;
of_msg = (ofconn->blocked
? ofconn->blocked
: rconn_recv(ofconn->rconn));
if (!of_msg) {
break;
}
if (mgr->fail_open) {
fail_open_maybe_recover(mgr->fail_open);
}
if (handle_openflow(ofconn, of_msg)) {
ofpbuf_delete(of_msg);
ofconn->blocked = NULL;
} else {
ofconn->blocked = of_msg;
ofconn->retry = false;
}
}
}
if (!rconn_is_alive(ofconn->rconn)) {
ofconn_destroy(ofconn);
} else if (!rconn_is_connected(ofconn->rconn)) {
ofconn_flush(ofconn);
}
}
static void
ofconn_wait(struct ofconn *ofconn, bool handling_openflow)
{
int i;
for (i = 0; i < N_SCHEDULERS; i++) {
pinsched_wait(ofconn->schedulers[i]);
}
rconn_run_wait(ofconn->rconn);
if (handling_openflow && ofconn_may_recv(ofconn)) {
rconn_recv_wait(ofconn->rconn);
}
}
/* Returns true if 'ofconn' should receive asynchronous messages of the given
* OAM_* 'type' and 'reason', which should be a OFPR_* value for OAM_PACKET_IN,
* a OFPPR_* value for OAM_PORT_STATUS, or an OFPRR_* value for
* OAM_FLOW_REMOVED. Returns false if the message should not be sent on
* 'ofconn'. */
static bool
ofconn_receives_async_msg(const struct ofconn *ofconn,
enum ofconn_async_msg_type type,
unsigned int reason)
{
const uint32_t *async_config;
assert(reason < 32);
assert((unsigned int) type < OAM_N_TYPES);
if (!rconn_is_connected(ofconn->rconn)) {
return false;
}
/* Keep the following code in sync with the documentation in the
* "Asynchronous Messages" section in DESIGN. */
if (ofconn->type == OFCONN_SERVICE && !ofconn->miss_send_len) {
/* Service connections don't get asynchronous messages unless they have
* explicitly asked for them by setting a nonzero miss send length. */
return false;
}
async_config = (ofconn->role == NX_ROLE_SLAVE
? ofconn->slave_async_config
: ofconn->master_async_config);
if (!(async_config[type] & (1u << reason))) {
return false;
}
return true;
}
/* Returns a human-readable name for an OpenFlow connection between 'mgr' and
* 'target', suitable for use in log messages for identifying the connection.
*
* The name is dynamically allocated. The caller should free it (with free())
* when it is no longer needed. */
static char *
ofconn_make_name(const struct connmgr *mgr, const char *target)
{
return xasprintf("%s<->%s", mgr->name, target);
}
static void
ofconn_set_rate_limit(struct ofconn *ofconn, int rate, int burst)
{
int i;
for (i = 0; i < N_SCHEDULERS; i++) {
struct pinsched **s = &ofconn->schedulers[i];
if (rate > 0) {
if (!*s) {
*s = pinsched_create(rate, burst);
} else {
pinsched_set_limits(*s, rate, burst);
}
} else {
pinsched_destroy(*s);
*s = NULL;
}
}
}
static void
ofconn_send(const struct ofconn *ofconn, struct ofpbuf *msg,
struct rconn_packet_counter *counter)
{
ofpmsg_update_length(msg);
rconn_send(ofconn->rconn, msg, counter);
}
/* Sending asynchronous messages. */
static void schedule_packet_in(struct ofconn *, struct ofputil_packet_in);
/* Sends an OFPT_PORT_STATUS message with 'opp' and 'reason' to appropriate
* controllers managed by 'mgr'. */
void
connmgr_send_port_status(struct connmgr *mgr,
const struct ofputil_phy_port *pp, uint8_t reason)
{
/* XXX Should limit the number of queued port status change messages. */
struct ofputil_port_status ps;
struct ofconn *ofconn;
ps.reason = reason;
ps.desc = *pp;
LIST_FOR_EACH (ofconn, node, &mgr->all_conns) {
if (ofconn_receives_async_msg(ofconn, OAM_PORT_STATUS, reason)) {
struct ofpbuf *msg;
msg = ofputil_encode_port_status(&ps, ofconn->protocol);
ofconn_send(ofconn, msg, NULL);
}
}
}
/* Sends an OFPT_FLOW_REMOVED or NXT_FLOW_REMOVED message based on 'fr' to
* appropriate controllers managed by 'mgr'. */
void
connmgr_send_flow_removed(struct connmgr *mgr,
const struct ofputil_flow_removed *fr)
{
struct ofconn *ofconn;
LIST_FOR_EACH (ofconn, node, &mgr->all_conns) {
if (ofconn_receives_async_msg(ofconn, OAM_FLOW_REMOVED, fr->reason)) {
struct ofpbuf *msg;
/* Account flow expirations as replies to OpenFlow requests. That
* works because preventing OpenFlow requests from being processed
* also prevents new flows from being added (and expiring). (It
* also prevents processing OpenFlow requests that would not add
* new flows, so it is imperfect.) */
msg = ofputil_encode_flow_removed(fr, ofconn->protocol);
ofconn_send_reply(ofconn, msg);
}
}
}
/* Given 'pin', sends an OFPT_PACKET_IN message to each OpenFlow controller as
* necessary according to their individual configurations.
*
* The caller doesn't need to fill in pin->buffer_id or pin->total_len. */
void
connmgr_send_packet_in(struct connmgr *mgr,
const struct ofputil_packet_in *pin)
{
struct ofconn *ofconn;
LIST_FOR_EACH (ofconn, node, &mgr->all_conns) {
if (ofconn_receives_async_msg(ofconn, OAM_PACKET_IN, pin->reason)
&& ofconn->controller_id == pin->controller_id) {
schedule_packet_in(ofconn, *pin);
}
}
}
/* pinsched callback for sending 'ofp_packet_in' on 'ofconn'. */
static void
do_send_packet_in(struct ofpbuf *ofp_packet_in, void *ofconn_)
{
struct ofconn *ofconn = ofconn_;
rconn_send_with_limit(ofconn->rconn, ofp_packet_in,
ofconn->packet_in_counter, 100);
}
/* Takes 'pin', composes an OpenFlow packet-in message from it, and passes it
* to 'ofconn''s packet scheduler for sending. */
static void
schedule_packet_in(struct ofconn *ofconn, struct ofputil_packet_in pin)
{
struct connmgr *mgr = ofconn->connmgr;
pin.total_len = pin.packet_len;
/* Get OpenFlow buffer_id. */
if (pin.reason == OFPR_ACTION) {
pin.buffer_id = UINT32_MAX;
} else if (mgr->fail_open && fail_open_is_active(mgr->fail_open)) {
pin.buffer_id = pktbuf_get_null();
} else if (!ofconn->pktbuf) {
pin.buffer_id = UINT32_MAX;
} else {
pin.buffer_id = pktbuf_save(ofconn->pktbuf, pin.packet, pin.packet_len,
pin.fmd.in_port);
}
/* Figure out how much of the packet to send. */
if (pin.reason == OFPR_NO_MATCH) {
pin.send_len = pin.packet_len;
} else {
/* Caller should have initialized 'send_len' to 'max_len' specified in
* output action. */
}
if (pin.buffer_id != UINT32_MAX) {
pin.send_len = MIN(pin.send_len, ofconn->miss_send_len);
}
/* Make OFPT_PACKET_IN and hand over to packet scheduler. It might
* immediately call into do_send_packet_in() or it might buffer it for a
* while (until a later call to pinsched_run()). */
pinsched_send(ofconn->schedulers[pin.reason == OFPR_NO_MATCH ? 0 : 1],
pin.fmd.in_port,
ofputil_encode_packet_in(&pin, ofconn->protocol,
ofconn->packet_in_format),
do_send_packet_in, ofconn);
}
/* Fail-open settings. */
/* Returns the failure handling mode (OFPROTO_FAIL_SECURE or
* OFPROTO_FAIL_STANDALONE) for 'mgr'. */
enum ofproto_fail_mode
connmgr_get_fail_mode(const struct connmgr *mgr)
{
return mgr->fail_mode;
}
/* Sets the failure handling mode for 'mgr' to 'fail_mode' (either
* OFPROTO_FAIL_SECURE or OFPROTO_FAIL_STANDALONE). */
void
connmgr_set_fail_mode(struct connmgr *mgr, enum ofproto_fail_mode fail_mode)
{
if (mgr->fail_mode != fail_mode) {
mgr->fail_mode = fail_mode;
update_fail_open(mgr);
if (!connmgr_has_controllers(mgr)) {
ofproto_flush_flows(mgr->ofproto);
}
}
}
/* Fail-open implementation. */
/* Returns the longest probe interval among the primary controllers configured
* on 'mgr'. Returns 0 if there are no primary controllers. */
int
connmgr_get_max_probe_interval(const struct connmgr *mgr)
{
const struct ofconn *ofconn;
int max_probe_interval;
max_probe_interval = 0;
HMAP_FOR_EACH (ofconn, hmap_node, &mgr->controllers) {
int probe_interval = rconn_get_probe_interval(ofconn->rconn);
max_probe_interval = MAX(max_probe_interval, probe_interval);
}
return max_probe_interval;
}
/* Returns the number of seconds for which all of 'mgr's primary controllers
* have been disconnected. Returns 0 if 'mgr' has no primary controllers. */
int
connmgr_failure_duration(const struct connmgr *mgr)
{
const struct ofconn *ofconn;
int min_failure_duration;
if (!connmgr_has_controllers(mgr)) {
return 0;
}
min_failure_duration = INT_MAX;
HMAP_FOR_EACH (ofconn, hmap_node, &mgr->controllers) {
int failure_duration = rconn_failure_duration(ofconn->rconn);
min_failure_duration = MIN(min_failure_duration, failure_duration);
}
return min_failure_duration;
}
/* Returns true if at least one primary controller is connected (regardless of
* whether those controllers are believed to have authenticated and accepted
* this switch), false if none of them are connected. */
bool
connmgr_is_any_controller_connected(const struct connmgr *mgr)
{
const struct ofconn *ofconn;
HMAP_FOR_EACH (ofconn, hmap_node, &mgr->controllers) {
if (rconn_is_connected(ofconn->rconn)) {
return true;
}
}
return false;
}
/* Returns true if at least one primary controller is believed to have
* authenticated and accepted this switch, false otherwise. */
bool
connmgr_is_any_controller_admitted(const struct connmgr *mgr)
{
const struct ofconn *ofconn;
HMAP_FOR_EACH (ofconn, hmap_node, &mgr->controllers) {
if (rconn_is_admitted(ofconn->rconn)) {
return true;
}
}
return false;
}
/* In-band configuration. */
static bool any_extras_changed(const struct connmgr *,
const struct sockaddr_in *extras, size_t n);
/* Sets the 'n' TCP port addresses in 'extras' as ones to which 'mgr''s
* in-band control should guarantee access, in the same way that in-band
* control guarantees access to OpenFlow controllers. */
void
connmgr_set_extra_in_band_remotes(struct connmgr *mgr,
const struct sockaddr_in *extras, size_t n)
{
if (!any_extras_changed(mgr, extras, n)) {
return;
}
free(mgr->extra_in_band_remotes);
mgr->n_extra_remotes = n;
mgr->extra_in_band_remotes = xmemdup(extras, n * sizeof *extras);
update_in_band_remotes(mgr);
}
/* Sets the OpenFlow queue used by flows set up by in-band control on
* 'mgr' to 'queue_id'. If 'queue_id' is negative, then in-band control
* flows will use the default queue. */
void
connmgr_set_in_band_queue(struct connmgr *mgr, int queue_id)
{
if (queue_id != mgr->in_band_queue) {
mgr->in_band_queue = queue_id;
update_in_band_remotes(mgr);
}
}
static bool
any_extras_changed(const struct connmgr *mgr,
const struct sockaddr_in *extras, size_t n)
{
size_t i;
if (n != mgr->n_extra_remotes) {
return true;
}
for (i = 0; i < n; i++) {
const struct sockaddr_in *old = &mgr->extra_in_band_remotes[i];
const struct sockaddr_in *new = &extras[i];
if (old->sin_addr.s_addr != new->sin_addr.s_addr ||
old->sin_port != new->sin_port) {
return true;
}
}
return false;
}
/* In-band implementation. */
bool
connmgr_msg_in_hook(struct connmgr *mgr, const struct flow *flow,
const struct ofpbuf *packet)
{
return mgr->in_band && in_band_msg_in_hook(mgr->in_band, flow, packet);
}
bool
connmgr_may_set_up_flow(struct connmgr *mgr, const struct flow *flow,
const struct nlattr *odp_actions,
size_t actions_len)
{
return !mgr->in_band || in_band_rule_check(flow, odp_actions, actions_len);
}
/* Fail-open and in-band implementation. */
/* Called by 'ofproto' after all flows have been flushed, to allow fail-open
* and standalone mode to re-create their flows.
*
* In-band control has more sophisticated code that manages flows itself. */
void
connmgr_flushed(struct connmgr *mgr)
{
if (mgr->fail_open) {
fail_open_flushed(mgr->fail_open);
}
/* If there are no controllers and we're in standalone mode, set up a flow
* that matches every packet and directs them to OFPP_NORMAL (which goes to
* us). Otherwise, the switch is in secure mode and we won't pass any
* traffic until a controller has been defined and it tells us to do so. */
if (!connmgr_has_controllers(mgr)
&& mgr->fail_mode == OFPROTO_FAIL_STANDALONE) {
struct ofpbuf ofpacts;
struct match match;
ofpbuf_init(&ofpacts, OFPACT_OUTPUT_SIZE);
ofpact_put_OUTPUT(&ofpacts)->port = OFPP_NORMAL;
ofpact_pad(&ofpacts);
match_init_catchall(&match);
ofproto_add_flow(mgr->ofproto, &match, 0, ofpacts.data, ofpacts.size);
ofpbuf_uninit(&ofpacts);
}
}
/* Creates a new ofservice for 'target' in 'mgr'. Returns 0 if successful,
* otherwise a positive errno value.
*
* ofservice_reconfigure() must be called to fully configure the new
* ofservice. */
static int
ofservice_create(struct connmgr *mgr, const char *target, uint8_t dscp)
{
struct ofservice *ofservice;
struct pvconn *pvconn;
int error;
error = pvconn_open(target, &pvconn, dscp);
if (error) {
return error;
}
ofservice = xzalloc(sizeof *ofservice);
hmap_insert(&mgr->services, &ofservice->node, hash_string(target, 0));
ofservice->pvconn = pvconn;
return 0;
}
static void
ofservice_destroy(struct connmgr *mgr, struct ofservice *ofservice)
{
hmap_remove(&mgr->services, &ofservice->node);
pvconn_close(ofservice->pvconn);
free(ofservice);
}
static void
ofservice_reconfigure(struct ofservice *ofservice,
const struct ofproto_controller *c)
{
ofservice->probe_interval = c->probe_interval;
ofservice->rate_limit = c->rate_limit;
ofservice->burst_limit = c->burst_limit;
ofservice->enable_async_msgs = c->enable_async_msgs;
ofservice->dscp = c->dscp;
}
/* Finds and returns the ofservice within 'mgr' that has the given
* 'target', or a null pointer if none exists. */
static struct ofservice *
ofservice_lookup(struct connmgr *mgr, const char *target)
{
struct ofservice *ofservice;
HMAP_FOR_EACH_WITH_HASH (ofservice, node, hash_string(target, 0),
&mgr->services) {
if (!strcmp(pvconn_get_name(ofservice->pvconn), target)) {
return ofservice;
}
}
return NULL;
}
/* Flow monitors (NXST_FLOW_MONITOR). */
/* A counter incremented when something significant happens to an OpenFlow
* rule.
*
* - When a rule is added, its 'add_seqno' and 'modify_seqno' are set to
* the current value (which is then incremented).
*
* - When a rule is modified, its 'modify_seqno' is set to the current
* value (which is then incremented).
*
* Thus, by comparing an old value of monitor_seqno against a rule's
* 'add_seqno', one can tell whether the rule was added before or after the old
* value was read, and similarly for 'modify_seqno'.
*
* 32 bits should normally be sufficient (and would be nice, to save space in
* each rule) but then we'd have to have some special cases for wraparound.
*
* We initialize monitor_seqno to 1 to allow 0 to be used as an invalid
* value. */
static uint64_t monitor_seqno = 1;
COVERAGE_DEFINE(ofmonitor_pause);
COVERAGE_DEFINE(ofmonitor_resume);
enum ofperr
ofmonitor_create(const struct ofputil_flow_monitor_request *request,
struct ofconn *ofconn, struct ofmonitor **monitorp)
{
struct ofmonitor *m;
*monitorp = NULL;
m = ofmonitor_lookup(ofconn, request->id);
if (m) {
return OFPERR_NXBRC_FM_DUPLICATE_ID;
}
m = xmalloc(sizeof *m);
m->ofconn = ofconn;
hmap_insert(&ofconn->monitors, &m->ofconn_node, hash_int(request->id, 0));
m->id = request->id;
m->flags = request->flags;
m->out_port = request->out_port;
m->table_id = request->table_id;
minimatch_init(&m->match, &request->match);
*monitorp = m;
return 0;
}
struct ofmonitor *
ofmonitor_lookup(struct ofconn *ofconn, uint32_t id)
{
struct ofmonitor *m;
HMAP_FOR_EACH_IN_BUCKET (m, ofconn_node, hash_int(id, 0),
&ofconn->monitors) {
if (m->id == id) {
return m;
}
}
return NULL;
}
void
ofmonitor_destroy(struct ofmonitor *m)
{
if (m) {
hmap_remove(&m->ofconn->monitors, &m->ofconn_node);
free(m);
}
}
void
ofmonitor_report(struct connmgr *mgr, struct rule *rule,
enum nx_flow_update_event event,
enum ofp_flow_removed_reason reason,
const struct ofconn *abbrev_ofconn, ovs_be32 abbrev_xid)
{
enum nx_flow_monitor_flags update;
struct ofconn *ofconn;
switch (event) {
case NXFME_ADDED:
update = NXFMF_ADD;
rule->add_seqno = rule->modify_seqno = monitor_seqno++;
break;
case NXFME_DELETED:
update = NXFMF_DELETE;
break;
case NXFME_MODIFIED:
update = NXFMF_MODIFY;
rule->modify_seqno = monitor_seqno++;
break;
default:
case NXFME_ABBREV:
NOT_REACHED();
}
LIST_FOR_EACH (ofconn, node, &mgr->all_conns) {
enum nx_flow_monitor_flags flags = 0;
struct ofmonitor *m;
if (ofconn->monitor_paused) {
/* Only send NXFME_DELETED notifications for flows that were added
* before we paused. */
if (event != NXFME_DELETED
|| rule->add_seqno > ofconn->monitor_paused) {
continue;
}
}
HMAP_FOR_EACH (m, ofconn_node, &ofconn->monitors) {
if (m->flags & update
&& (m->table_id == 0xff || m->table_id == rule->table_id)
&& ofoperation_has_out_port(rule->pending, m->out_port)
&& cls_rule_is_loose_match(&rule->cr, &m->match)) {
flags |= m->flags;
}
}
if (flags) {
if (list_is_empty(&ofconn->updates)) {
ofputil_start_flow_update(&ofconn->updates);
ofconn->sent_abbrev_update = false;
}
if (ofconn != abbrev_ofconn || ofconn->monitor_paused) {
struct ofputil_flow_update fu;
struct match match;
fu.event = event;
fu.reason = event == NXFME_DELETED ? reason : 0;
fu.idle_timeout = rule->idle_timeout;
fu.hard_timeout = rule->hard_timeout;
fu.table_id = rule->table_id;
fu.cookie = rule->flow_cookie;
minimatch_expand(&rule->cr.match, &match);
fu.match = &match;
if (flags & NXFMF_ACTIONS) {
fu.ofpacts = rule->ofpacts;
fu.ofpacts_len = rule->ofpacts_len;
} else {
fu.ofpacts = NULL;
fu.ofpacts_len = 0;
}
ofputil_append_flow_update(&fu, &ofconn->updates);
} else if (!ofconn->sent_abbrev_update) {
struct ofputil_flow_update fu;
fu.event = NXFME_ABBREV;
fu.xid = abbrev_xid;
ofputil_append_flow_update(&fu, &ofconn->updates);
ofconn->sent_abbrev_update = true;
}
}
}
}
void
ofmonitor_flush(struct connmgr *mgr)
{
struct ofconn *ofconn;
LIST_FOR_EACH (ofconn, node, &mgr->all_conns) {
struct ofpbuf *msg, *next;
LIST_FOR_EACH_SAFE (msg, next, list_node, &ofconn->updates) {
list_remove(&msg->list_node);
ofconn_send(ofconn, msg, ofconn->monitor_counter);
if (!ofconn->monitor_paused
&& ofconn->monitor_counter->n_bytes > 128 * 1024) {
struct ofpbuf *pause;
COVERAGE_INC(ofmonitor_pause);
ofconn->monitor_paused = monitor_seqno++;
pause = ofpraw_alloc_xid(OFPRAW_NXT_FLOW_MONITOR_PAUSED,
OFP10_VERSION, htonl(0), 0);
ofconn_send(ofconn, pause, ofconn->monitor_counter);
}
}
}
}
static void
ofmonitor_resume(struct ofconn *ofconn)
{
struct ofpbuf *resumed;
struct ofmonitor *m;
struct list rules;
struct list msgs;
list_init(&rules);
HMAP_FOR_EACH (m, ofconn_node, &ofconn->monitors) {
ofmonitor_collect_resume_rules(m, ofconn->monitor_paused, &rules);
}
list_init(&msgs);
ofmonitor_compose_refresh_updates(&rules, &msgs);
resumed = ofpraw_alloc_xid(OFPRAW_NXT_FLOW_MONITOR_RESUMED, OFP10_VERSION,
htonl(0), 0);
list_push_back(&msgs, &resumed->list_node);
ofconn_send_replies(ofconn, &msgs);
ofconn->monitor_paused = 0;
}
static void
ofmonitor_run(struct connmgr *mgr)
{
struct ofconn *ofconn;
LIST_FOR_EACH (ofconn, node, &mgr->all_conns) {
if (ofconn->monitor_paused && !ofconn->monitor_counter->n_packets) {
COVERAGE_INC(ofmonitor_resume);
ofmonitor_resume(ofconn);
}
}
}
static void
ofmonitor_wait(struct connmgr *mgr)
{
struct ofconn *ofconn;
LIST_FOR_EACH (ofconn, node, &mgr->all_conns) {
if (ofconn->monitor_paused && !ofconn->monitor_counter->n_packets) {
poll_immediate_wake();
}
}
}